Open Access. Powered by Scholars. Published by Universities.®

Science and Technology Studies Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Selected Works

Activated

Articles 1 - 4 of 4

Full-Text Articles in Science and Technology Studies

Enhancement Of Removal Of Trace Organic Contaminants By Powdered Activated Carbon Dosing Into Membrane Bioreactors, Ngoc Luong Nguyen, Faisal Ibney Hai, Long Nghiem, Jinguo Kang, William Price, Chul Park, Kazuo Yamamoto Sep 2015

Enhancement Of Removal Of Trace Organic Contaminants By Powdered Activated Carbon Dosing Into Membrane Bioreactors, Ngoc Luong Nguyen, Faisal Ibney Hai, Long Nghiem, Jinguo Kang, William Price, Chul Park, Kazuo Yamamoto

Faisal I Hai

This study compared the removal efficiency of 22 widespread trace organic contaminants by a laboratory-scale membrane bioreactor (MBR) with and without direct addition of powdered activated carbon (PAC) into the activated sludge reactor over a period of 312 days. The removal of hydrophilic and biologically persistent trace organic contaminants was immediately improved to above 95% after the addition of PAC into MBR. However, a compound-specific gradual decrease in removal underscored the requirement for the addition of fresh PAC. Adsorption onto PAC-added sludge appeared to play a significant role in the relatively more effective aqueous phase removal of a few resistant …


Comparison Between Sequential And Simultaneous Application Of Activated Carbon With Membrane Bioreactor For Trace Organic Contaminant Removal, Luong N. Nguyen, Faisal I. Hai, Jinguo Kang, Long D. Nghiem, William E. Price, Wenshan Guo, Huu H. Ngo, Kuo-Lun Tung Sep 2015

Comparison Between Sequential And Simultaneous Application Of Activated Carbon With Membrane Bioreactor For Trace Organic Contaminant Removal, Luong N. Nguyen, Faisal I. Hai, Jinguo Kang, Long D. Nghiem, William E. Price, Wenshan Guo, Huu H. Ngo, Kuo-Lun Tung

Faisal I Hai

The removal efficiency of 22 selected trace organic contaminants by sequential application of granular activated carbon (GAC) and simultaneous application of powdered activated carbon (PAC) with membrane bioreactor (MBR) was compared in this study. Both sequential application of GAC following MBR treatment (MBR–GAC) and simultaneous application of PAC within MBR (PAC–MBR) achieved improved removal (over 95%) of seven hydrophilic and biologically persistent compounds, which were less efficiently removed by MBR-only treatment (negligible to 70%). However, gradual breakthrough of these compounds occurred over an extended operation period. Charged compounds, particularly, fenoprop and diclofenac, demonstrated the fastest breakthrough (complete and 50–70%, in …


Coupling Granular Activated Carbon Adsorption With Membrane Bioreactor Treatment For Trace Organic Contaminant Removal: Breakthrough Behaviour Of Persistent And Hydrophilic Compounds, Luong N. Nguyen, Faisal I. Hai, William E. Price, Jinguo Kang, Long D. Nghiem Sep 2015

Coupling Granular Activated Carbon Adsorption With Membrane Bioreactor Treatment For Trace Organic Contaminant Removal: Breakthrough Behaviour Of Persistent And Hydrophilic Compounds, Luong N. Nguyen, Faisal I. Hai, William E. Price, Jinguo Kang, Long D. Nghiem

Faisal I Hai

This study investigated the removal of trace organic contaminants by a combined membrane bioreactor - granular activated carbon (MBR-GAC) system over a period of 196 days. Of the 22 compounds investigated here, all six hydrophilic compounds with electron-withdrawing functional groups (i.e., metronidazole, carbamazepine, ketoprofen, naproxen, fenoprop and diclofenac) exhibited very low removal efficiency by MBR-only treatment. GAC post-treatment initially complemented MBR treatment very well; however, a compound-specific gradual deterioration of the removal of the above-mentioned problematic compounds was noted. While a 20% breakthrough of all four negatively charged compounds namely ketoprofen, naproxen, fenoprop and diclofenac occurred within 1000-3000 bed volumes …


Coupling Powdered Activated Carbon (Pac) Adsorption With Membrane Bioreactor (Mbr) Treatment For Enhanced Removal Of Trace Organics, Luong Nguyen, Faisal Ibney Hai, Long Nghiem, Jinguo Kang, William Price Sep 2015

Coupling Powdered Activated Carbon (Pac) Adsorption With Membrane Bioreactor (Mbr) Treatment For Enhanced Removal Of Trace Organics, Luong Nguyen, Faisal Ibney Hai, Long Nghiem, Jinguo Kang, William Price

Faisal I Hai

the occurrence of trace organics such as pesticides, pharmaceutically active compounds, natural and synthetic hormones as well as varous industrial compounds in the aquatic environment is of great concern due to their potential adverse effects on human health and those of other biota. Therefore, the removal of these compounds from wastewater is an important consideration to ensure safe drinking water and better protection of the environment. In the literature, several techniques have been explored for trace organics removal, namely, conventional activated sludge, membrane bioreactors (MBRs), and absorptioin. However it has been found that neither MBR nor activated carbon on its …