Open Access. Powered by Scholars. Published by Universities.®

Science and Technology Studies Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 532

Full-Text Articles in Science and Technology Studies

Ezdi's Semantics-Enhanced Linguistic, Nlp, And Ml Approach For Health Informatics, Raxit Goswami, Neil Shah, Amit P. Sheth Oct 2015

Ezdi's Semantics-Enhanced Linguistic, Nlp, And Ml Approach For Health Informatics, Raxit Goswami, Neil Shah, Amit P. Sheth

Kno.e.sis Publications

ezDI uses large and extensive knowledge graph to enhance linguistics, NLP and ML techniques to improve structured data extraction from millions of EMR records. It then normalizes it, and maps it with various computer-processable nomenclature such as SNOMED-CT, RxNorm, ICD-9, ICD-10, CPT, and LOINC. Furthermore, it applies advanced reasoning that exploited domain-specific and hierarchical relationships among entities in the knowledge graph to make the data actionable. These capabilities are part of its highly scalable AWS deployed heath intelligence platform that support healthcare informatics applications, including Computer Assisted Coding (CAC), Computerized Document Improvement (CDI), compliance and audit, and core measures and ...


Social Health Signals, Ashutosh Sopan Jadhav, Swapnil Soni, Amit P. Sheth Oct 2015

Social Health Signals, Ashutosh Sopan Jadhav, Swapnil Soni, Amit P. Sheth

Kno.e.sis Publications

Recently Twitter, has emerged as one of the primary medium for sharing and seeking of the latest information related to variety of the topics including health information. Recently, Twitter has emerged as one of the primary mediums for sharing and seeking the latest information related to a variety of topics, including health information. Although Twitter is an excellent information source, identification of useful information from the deluge of tweets is one of the major challenge. Twitter search is limited to keyword based techniques to retrieve information for a given query and sometimes the results do not contain real-time information. Moreover ...


Feedback-Driven Radiology Exam Report Retrieval With Semantics, Sarasi Lalithsena, Luis Tari, Anna Von Reden, Benjamin Wilson, Brian J. Kolowitz, John Kalafut, Steven Gustafson, Amit P. Sheth Oct 2015

Feedback-Driven Radiology Exam Report Retrieval With Semantics, Sarasi Lalithsena, Luis Tari, Anna Von Reden, Benjamin Wilson, Brian J. Kolowitz, John Kalafut, Steven Gustafson, Amit P. Sheth

Kno.e.sis Publications

Clinical documents are vital resources for radiologists to have a better understanding of patient history. The use of clinical documents can complement the often brief reasons for exams that are provided by physicians in order to perform more informed diagnoses. With the large number of study exams that radiologists have to perform on a daily basis, it becomes too time-consuming for radiologists to sift through each patient's clinical documents. It is therefore important to provide a capability that can present contextually relevant clinical documents, and at the same time satisfy the diverse information needs among radiologists from different specialties ...


Implicit Information Extraction From Clinical Notes, Sujan Perera Oct 2015

Implicit Information Extraction From Clinical Notes, Sujan Perera

Kno.e.sis Publications

We address the problem of extracting implicit information from the unstructured clinical notes. Here we introduce the problem of 'implicit entity recognition in clinical notes', propose a knowledge driven approach to address this problem and demonstrate the results of our initial experiments.


Automatic Emotion Identification From Text, Wenbo Wang Sep 2015

Automatic Emotion Identification From Text, Wenbo Wang

Kno.e.sis Publications

Emotions are both prevalent in and essential to most aspects of our lives. They in- fluence our decision-making, affect our social relationships and shape our daily behavior. With the rapid growth of emotion-rich textual content, such as microblog posts, blog posts, and forum discussions, there is a growing need to develop algorithms and techniques for identifying people’s emotions expressed in text. It has valuable implications for the studies of suicide prevention, employee productivity, well-being of people, customer relationship management, etc. However, emotion identification is quite challenging partly due to the following reasons: i) It is a multi-class classification problem ...


Scalable Euclidean Embedding For Big Data, Zohreh S. Alavi, Sagar Sharma, Lu Zhou, Keke Chen Jul 2015

Scalable Euclidean Embedding For Big Data, Zohreh S. Alavi, Sagar Sharma, Lu Zhou, Keke Chen

Kno.e.sis Publications

Euclidean embedding algorithms transform data defined in an arbitrary metric space to the Euclidean space, which is critical to many visualization techniques. At big-data scale, these algorithms need to be scalable to massive dataparallel infrastructures. Designing such scalable algorithms and understanding the factors affecting the algorithms are important research problems for visually analyzing big data. We propose a framework that extends the existing Euclidean embedding algorithms to scalable ones. Specifically, it decomposes an existing algorithm into naturally parallel components and non-parallelizable components. Then, data parallel implementations such as MapReduce and data reduction techniques are applied to the two categories of ...


Domain Specific Document Retrieval Framework For Real-Time Social Health Data, Swapnil Soni Jul 2015

Domain Specific Document Retrieval Framework For Real-Time Social Health Data, Swapnil Soni

Kno.e.sis Publications

With the advent of the web search and microblogging, the percentage of Online Health Information Seekers (OHIS) using these online services to share and seek health real-time information has in- creased exponentially. OHIS use web search engines or microblogging search services to seek out latest, relevant as well as reliable health in- formation. When OHIS turn to microblogging search services to search real-time content, trends and breaking news, etc. the search results are not promising. Two major challenges exist in the current microblogging search engines are keyword based techniques and results do not contain real-time information. To address these challenges ...


Evaluating A Potential Commercial Tool For Healthcare Application For People With Dementia, Tanvi Banerjee, Pramod Anantharam, William L. Romine, Larry Wayne Lawhorne Jul 2015

Evaluating A Potential Commercial Tool For Healthcare Application For People With Dementia, Tanvi Banerjee, Pramod Anantharam, William L. Romine, Larry Wayne Lawhorne

Kno.e.sis Publications

The widespread use of smartphones and sensors has made physiology, environment, and public health notifications amenable to continuous monitoring. Personalized digital health and patient empowerment can become a reality only if the complex multisensory and multimodal data is processed within the patient context, converting relevant medical knowledge into actionable information for better and timely decisions. We apply these principles in the healthcare domain of dementia. Specifically, in this study we validate one of our sensor platforms to ascertain whether it will be suitable for detecting physiological changes that may help us detect changes in people with dementia. This study shows ...


Trust Management: Multimodal Data Perspective, Krishnaprasad Thirunarayan Jun 2015

Trust Management: Multimodal Data Perspective, Krishnaprasad Thirunarayan

Kno.e.sis Publications

No abstract provided.


"Time For Dabs": Analyzing Twitter Data On Butane Hash Oil Use, Raminta Daniulaityte, Robert G. Carlson, Farahnaz Golroo, Sanjaya Wijeratne, Edward W. Boyer, Silvia S. Martins, Ramzi W. Nahhas, Amit P. Sheth Jun 2015

"Time For Dabs": Analyzing Twitter Data On Butane Hash Oil Use, Raminta Daniulaityte, Robert G. Carlson, Farahnaz Golroo, Sanjaya Wijeratne, Edward W. Boyer, Silvia S. Martins, Ramzi W. Nahhas, Amit P. Sheth

Kno.e.sis Publications

No abstract provided.


Entity Recommendations Using Hierarchical Knowledge Bases, Siva Kumar Cheekula, Pavan Kapanipathi, Derek Doran, Prateek Jain, Amit P. Sheth May 2015

Entity Recommendations Using Hierarchical Knowledge Bases, Siva Kumar Cheekula, Pavan Kapanipathi, Derek Doran, Prateek Jain, Amit P. Sheth

Kno.e.sis Publications

Recent developments in recommendation algorithms have focused on integrating Linked Open Data to augment traditional algorithms with background knowledge. These developments recognize that the integration of Linked Open Data may or better performance, particularly in cold start cases. In this paper, we explore if and how a specific type of Linked Open Data, namely hierarchical knowledge, may be utilized for recommendation systems. We propose a content-based recommendation approaches that adapts a spreading activation algorithm over the DBpedia category structure to identify entities of interest to the user. Evaluation of the algorithm over the Movielens dataset demonstrates that our method yields ...


Analyzing The Social Media Footprint Of Street Gangs, Sanjaya Wijeratne, Derek Doran, Amit P. Sheth, Jack Dustin May 2015

Analyzing The Social Media Footprint Of Street Gangs, Sanjaya Wijeratne, Derek Doran, Amit P. Sheth, Jack Dustin

Kno.e.sis Publications

Gangs utilize social media as a way to maintain threatening virtual presences, to communicate about their activities, and to intimidate others. Such usage has gained the attention of many justice service agencies that wish to create better crime prevention and judicial services. However, these agencies use analysis methods that are labor intensive and only lead to basic, qualitative data interpretations. This paper presents the architecture of a modern platform to discover the structure, function, and operation of gangs through the lens of social media. Preliminary analysis of social media posts shared in the greater Chicago, IL region demonstrate the platform ...


Domain Specific Document Retrieval Framework On Near Real-Time Social Health Data, Swapnil Soni May 2015

Domain Specific Document Retrieval Framework On Near Real-Time Social Health Data, Swapnil Soni

Kno.e.sis Publications

With the advent of web search and microblogging, the percentage of Online Health Information Seekers (OHIS) using these services to share and seek health information in real-time has increased exponentially. Recently, Twitter has emerged as one of the primary mediums for sharing and seeking of the latest information related to a variety of topics, including health information. Although Twitter is an excellent information source, the identification of useful information from the deluge of tweets is one of the major challenges. Twitter search is limited to keyword-based techniques to retrieve information for a given query and sometimes the results do not ...


Big Data And Smart Cities, Amit P. Sheth Apr 2015

Big Data And Smart Cities, Amit P. Sheth

Kno.e.sis Publications

No abstract provided.


Context-Driven Automatic Subgraph Creation For Literature-Based Discovery, Delroy H. Cameron, Ramakanth Kavuluru, Thomas Rindflesch, Amit P. Sheth, Krishnaprasad Thirunarayan, Olivier Bodenreider Apr 2015

Context-Driven Automatic Subgraph Creation For Literature-Based Discovery, Delroy H. Cameron, Ramakanth Kavuluru, Thomas Rindflesch, Amit P. Sheth, Krishnaprasad Thirunarayan, Olivier Bodenreider

Kno.e.sis Publications

Background: Literature-based discovery (LBD) is characterized by uncovering hidden associations in non-interacting scientific literature. Prior approaches to LBD include use of: 1) domain expertise and structured background knowledge to manually filter and explore the literature, 2) distributional statistics and graph-theoretic measures to rank interesting connections and 3) heuristics to help eliminate spurious connections. However, manual approaches to LBD are not scalable and purely distributional approaches may not be sufficient to obtain insights into the meaning of poorly understood associations. While several graph-based approaches have the potential to elucidate associations, their effectiveness has not been fully demonstrated. A considerable degree of ...


Smart Data - How You And I Will Exploit Big Data For Personalized Digital Health And Many Other Activities, Amit P. Sheth Feb 2015

Smart Data - How You And I Will Exploit Big Data For Personalized Digital Health And Many Other Activities, Amit P. Sheth

Kno.e.sis Publications

No abstract provided.


On Using Synthetic Social Media Stimuli In An Emergency Preparedness Functional Exercise, Andrew Hampton, Shreyansh Bhatt, Gary Alan Smith, Jeremy S. Brunn, Hemant Purohit, Valerie L. Shalin, John M. Flach, Amit P. Sheth Feb 2015

On Using Synthetic Social Media Stimuli In An Emergency Preparedness Functional Exercise, Andrew Hampton, Shreyansh Bhatt, Gary Alan Smith, Jeremy S. Brunn, Hemant Purohit, Valerie L. Shalin, John M. Flach, Amit P. Sheth

Kno.e.sis Publications

This paper details the creation and use of a massive (over 32,000 messages) artificially constructed 'Twitter' microblog stream for a regional emergency preparedness functional exercise. By combining microblog conversion, manual production, and a control set, we created a web based information stream providing valid, misleading, and irrelevant information to public information officers (PIOs) representing hospitals, fire departments, the local Red Cross, and city and county government officials. PIOs searched, monitored, and (through conventional channels) verified potentially actionable information that could then be redistributed through a personalized screen name. Our case study of a key PIO reveals several capabilities that ...


Extracting City Traffic Events From Social Streams, Pramod Anantharam, Payam Barnaghi, Krishnaprasad Thirunarayan, Amit P. Sheth Jan 2015

Extracting City Traffic Events From Social Streams, Pramod Anantharam, Payam Barnaghi, Krishnaprasad Thirunarayan, Amit P. Sheth

Kno.e.sis Publications

Cities are composed of complex systems with physical, cyber, and social components. Current works on extracting and understanding city events mainly rely on technology enabled infrastructure to observe and record events. In this work, we propose an approach to leverage citizen observations of various city systems and services such as traffic, public transport, water supply, weather, sewage, and public safety as a source of city events. We investigate the feasibility of using such textual streams for extracting city events from annotated text. We formalize the problem of annotating social streams such as microblogs as a sequence labeling problem. We present ...


Value Oriented Big Data Processing With Applications, Krishnaprasad Thirunarayan Jan 2015

Value Oriented Big Data Processing With Applications, Krishnaprasad Thirunarayan

Kno.e.sis Publications

We discuss the nature of Big Data and address the role of semantics in analyzing and processing Big Data that arises in the context of Physical-Cyber-Social Systems. To handle Volume, we advocate semantic perception that can convert low-level observational data to higher-level abstractions more suitable for decision- making. To handle Variety, we resort to semantic models and annotations of data so that intelligent processing can be done independent of heterogeneity of data formats and media. To handle Velocity, we seek to use continuous semantics capability to dynamically create event or situation specific models and recognize relevant new concepts, entities and ...


Semantic Gateway As A Service Architecture For Iot Interoperability, Pratikkumar Desai, Amit P. Sheth, Pramod Anantharam Jan 2015

Semantic Gateway As A Service Architecture For Iot Interoperability, Pratikkumar Desai, Amit P. Sheth, Pramod Anantharam

Kno.e.sis Publications

The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT connects sensors and devices that record physical observations to applications and services of the Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable architecture is required to provide connectivity between these silos, enabling discovery of physical sensors and interpretation of messages between things. This paper proposes a ...


Knowledge-Driven Personalized Contextual Mhealth Service For Asthma Management In Children, Pramod Anantharam, Tanvi Banerjee, Amit P. Sheth, Krishnaprasad Thirunarayan, Surendra Marupudi, Vaikunth Sridharan Jan 2015

Knowledge-Driven Personalized Contextual Mhealth Service For Asthma Management In Children, Pramod Anantharam, Tanvi Banerjee, Amit P. Sheth, Krishnaprasad Thirunarayan, Surendra Marupudi, Vaikunth Sridharan

Kno.e.sis Publications

Wide adoption of smartphones and availability of low-cost sensors has resulted in seamless and continuous monitoring of physiology, environment, and public health notifications. However, personalized digital health and patient empowerment can become a reality only if the complex multisensory and multimodal data is processed within the patient context. Contextual processing of patient data along with personalized medical knowledge can lead to actionable information for better and timely decisions. We present a system called kHealth capable of aggregating multisensory and multimodal data from sensors (passive sensing) and answers to questionnaire (active sensing) from patients with asthma. We present our preliminary data ...


Faces: Diversity-Aware Entity Summarization Using Incremental Hierarchical Conceptual Clustering, Kalpa Gunaratna, Krishnaprasad Thirunarayan, Amit P. Sheth Jan 2015

Faces: Diversity-Aware Entity Summarization Using Incremental Hierarchical Conceptual Clustering, Kalpa Gunaratna, Krishnaprasad Thirunarayan, Amit P. Sheth

Kno.e.sis Publications

Semantic Web documents that encode facts about entities on the Web have been growing rapidly in size and evolving over time. Creating summaries on lengthy Semantic Web documents for quick identification of the corresponding entity has been of great contemporary interest. In this paper, we explore automatic summarization techniques that characterize and enable identification of an entity and create summaries that are human friendly. Specifically, we highlight the importance of diversified (faceted) summaries by combining three dimensions: diversity, uniqueness, and popularity. Our novel diversity-aware entity summarization approach mimics human conceptual clustering techniques to group facts, and picks representative facts from ...


Understanding Social Effects In Online Networks, Huda Alhazmi, Swapna S. Gokhale, Derek Doran Jan 2015

Understanding Social Effects In Online Networks, Huda Alhazmi, Swapna S. Gokhale, Derek Doran

Kno.e.sis Publications

Understanding the motives behind people’s interactions online can offer sound bases to predict how a social network may evolve and also support a host of applications. We hypothesize that three offline social factors, namely, stature, relationship strength, and egocentricity may also play an important role in driving users’ interactions online. Therefore, we study the influence of these three social factors in online interactions by analyzing the transitivity in triads or three-way relationships among users. Analyzing transitivity through the lens of triad census for four popular social networks, namely, Facebook, Twitter, YouTube and Slashdot, we find that: (i) users’ interactions ...


Knowledge Enabled Approach To Predict The Location Of Twitter Users, Revathy Krishnamurthy, Pavan Kapanipathi, Amit P. Sheth, Krishnaprasad Thirunarayan Jan 2015

Knowledge Enabled Approach To Predict The Location Of Twitter Users, Revathy Krishnamurthy, Pavan Kapanipathi, Amit P. Sheth, Krishnaprasad Thirunarayan

Kno.e.sis Publications

Knowledge bases have been used to improve performance in applications ranging from web search and event detection to entity recognition and disambiguation. More recently, knowledge bases have been used to analyze social data. A key challenge in social data analysis has been the identification of the geographic location of online users in a social network such as Twitter. Existing approaches to predict the location of users, based on their tweets, rely solely on social media features or probabilistic language models. These approaches are supervised and require large training dataset of geo-tagged tweets to build their models. As most Twitter users ...


Using Ehrs For Heart Failure Therapy Recommendation Using Multidimensional Patient Similarity Analytics, Maryam Panahiazar, Vahid Taslimitehrani, Naveen L. Pereira, Jyotishman Pathak Jan 2015

Using Ehrs For Heart Failure Therapy Recommendation Using Multidimensional Patient Similarity Analytics, Maryam Panahiazar, Vahid Taslimitehrani, Naveen L. Pereira, Jyotishman Pathak

Kno.e.sis Publications

Electronic Health Records (EHRs) contain a wealth of information about an individual patient’s diagnosis, treatment and health outcomes. This information can be leveraged effectively to identify patients who are similar to each for disease diagnosis and prognosis. In recent years, several machine learning methods 1 have been proposed to assessing patient similarity, although the techniques have primarily focused on the use of patient diagnoses data from EHRs for the learning task. In this study, we develop a multidimensional patient similarity assessment technique that leverages multiple types of information from the EHR and predicts a medication plan for each new ...


Mining Behavior Of Citizen Sensor Communities To Improve Cooperation With Organizational Actors, Hemant Purohit Jan 2015

Mining Behavior Of Citizen Sensor Communities To Improve Cooperation With Organizational Actors, Hemant Purohit

Kno.e.sis Publications

Web 2.0 (social media) provides a natural platform for dynamic emergence of citizen (as) sensor communities, where the citizens generate content for sharing information and engaging in discussions. Such a citizen sensor community (CSC) has stated or implied goals that are helpful in the work of formal organizations, such as an emergency management unit, for prioritizing their response needs. This research addresses questions related to design of a cooperative system of organizations and citizens in CSC. Prior research by social scientists in a limited offline and online environment has provided a foundation for research on cooperative behavior challenges, including ...


Gender-Based Violence In 140 Characters Or Fewer: A #Bigdata Case Study Of Twitter, Hemant Purohit, Tanvi Banerjee, Andrew Hampton, Valerie L. Shalin, Nayanesh Bhandutia, Amit P. Sheth Jan 2015

Gender-Based Violence In 140 Characters Or Fewer: A #Bigdata Case Study Of Twitter, Hemant Purohit, Tanvi Banerjee, Andrew Hampton, Valerie L. Shalin, Nayanesh Bhandutia, Amit P. Sheth

Kno.e.sis Publications

Public institutions are increasingly reliant on data from social media sites to measure public attitude and provide timely public engagement. Such reliance includes the exploration of public views on important social issues such as gender-based violence (GBV). In this study, we examine big (social) data consisting of nearly fourteen million tweets collected from Twitter over a period of ten months to analyze public opinion regarding GBV, highlighting the nature of tweeting practices by geographical location and gender. We demonstrate the utility of Computational Social Science to mine insight from the corpus while accounting for the influence of both transient events ...


Anonymized Video Analysis Methods And Systems, Marjorie Skubic, James M. Keller, Fang Wang, Derek T. Anderson, Erik Stone, Robert H. Luke Iii, Tanvi Banerjee, Marilyn J. Rantz Nov 2014

Anonymized Video Analysis Methods And Systems, Marjorie Skubic, James M. Keller, Fang Wang, Derek T. Anderson, Erik Stone, Robert H. Luke Iii, Tanvi Banerjee, Marilyn J. Rantz

Kno.e.sis Publications

Methods and systems for anonymized video analysis are described. In one embodiment, a first silhouette image of a person in a living unit may be accessed. The first silhouette image may be based on a first video signal recorded by a first video camera. A second silhouette image of the person in the living unit may be accessed. The second silhouette image may be of a different view of the person than the first silhouette image. The second silhouette image may be based on a second video signal recorded by a second video camera. A three-dimensional model of the person ...


Protecting Web Servers From Web Robot Traffic, Derek Doran Nov 2014

Protecting Web Servers From Web Robot Traffic, Derek Doran

Kno.e.sis Publications

No abstract provided.


Triad-Based Role Discovery For Large Social Systems, Derek Doran Nov 2014

Triad-Based Role Discovery For Large Social Systems, Derek Doran

Kno.e.sis Publications

The social role of a participant in a social system conceptualizes the circumstances under which she chooses to interact with others, making their discovery and analysis important for theoretical and practical purposes. In this paper, we propose a methodology to detect such roles by utilizing the conditional triad censuses of ego-networks. These censuses are a promising tool for social role extraction because they capture the degree to which basic social forces push upon a user to interact with others in a system. Clusters of triad censuses, inferred from network samples that preserve local structural properties, define the social roles. The ...