Open Access. Powered by Scholars. Published by Universities.®

Science and Technology Studies Commons

Open Access. Powered by Scholars. Published by Universities.®

Kno.e.sis Publications

Twitter

Articles 1 - 15 of 15

Full-Text Articles in Science and Technology Studies

Social Health Signals, Ashutosh Sopan Jadhav, Swapnil Soni, Amit P. Sheth Oct 2015

Social Health Signals, Ashutosh Sopan Jadhav, Swapnil Soni, Amit P. Sheth

Kno.e.sis Publications

Recently Twitter, has emerged as one of the primary medium for sharing and seeking of the latest information related to variety of the topics including health information. Recently, Twitter has emerged as one of the primary mediums for sharing and seeking the latest information related to a variety of topics, including health information. Although Twitter is an excellent information source, identification of useful information from the deluge of tweets is one of the major challenge. Twitter search is limited to keyword based techniques to retrieve information for a given query and sometimes the results do not contain real-time information. Moreover ...


Domain Specific Document Retrieval Framework For Real-Time Social Health Data, Swapnil Soni Jul 2015

Domain Specific Document Retrieval Framework For Real-Time Social Health Data, Swapnil Soni

Kno.e.sis Publications

With the advent of the web search and microblogging, the percentage of Online Health Information Seekers (OHIS) using these online services to share and seek health real-time information has in- creased exponentially. OHIS use web search engines or microblogging search services to seek out latest, relevant as well as reliable health in- formation. When OHIS turn to microblogging search services to search real-time content, trends and breaking news, etc. the search results are not promising. Two major challenges exist in the current microblogging search engines are keyword based techniques and results do not contain real-time information. To address these challenges ...


Domain Specific Document Retrieval Framework On Near Real-Time Social Health Data, Swapnil Soni May 2015

Domain Specific Document Retrieval Framework On Near Real-Time Social Health Data, Swapnil Soni

Kno.e.sis Publications

With the advent of web search and microblogging, the percentage of Online Health Information Seekers (OHIS) using these services to share and seek health information in real-time has increased exponentially. Recently, Twitter has emerged as one of the primary mediums for sharing and seeking of the latest information related to a variety of topics, including health information. Although Twitter is an excellent information source, the identification of useful information from the deluge of tweets is one of the major challenges. Twitter search is limited to keyword-based techniques to retrieve information for a given query and sometimes the results do not ...


Knowledge Enabled Approach To Predict The Location Of Twitter Users, Revathy Krishnamurthy, Pavan Kapanipathi, Amit P. Sheth, Krishnaprasad Thirunarayan Jan 2015

Knowledge Enabled Approach To Predict The Location Of Twitter Users, Revathy Krishnamurthy, Pavan Kapanipathi, Amit P. Sheth, Krishnaprasad Thirunarayan

Kno.e.sis Publications

Knowledge bases have been used to improve performance in applications ranging from web search and event detection to entity recognition and disambiguation. More recently, knowledge bases have been used to analyze social data. A key challenge in social data analysis has been the identification of the geographic location of online users in a social network such as Twitter. Existing approaches to predict the location of users, based on their tweets, rely solely on social media features or probabilistic language models. These approaches are supervised and require large training dataset of geo-tagged tweets to build their models. As most Twitter users ...


Active Learning With Efficient Feature Weighting Methods For Improving Data Quality And Classification Accuracy, Justin Martineau, Lu Chen, Doreen Cheng, Amit P. Sheth Jun 2014

Active Learning With Efficient Feature Weighting Methods For Improving Data Quality And Classification Accuracy, Justin Martineau, Lu Chen, Doreen Cheng, Amit P. Sheth

Kno.e.sis Publications

Many machine learning datasets are noisy with a substantial number of mislabeled instances. This noise yields sub-optimal classification performance. In this paper we study a large, low quality annotated dataset, created quickly and cheaply using Amazon Mechanical Turk to crowdsource annotations. We describe computationally cheap feature weighting techniques and a novel non-linear distribution spreading algorithm that can be used to iteratively and interactively correcting mislabeled instances to significantly improve annotation quality at low cost. Eight different emotion extraction experiments on Twitter data demonstrate that our approach is just as effective as more computationally expensive techniques. Our techniques save a considerable ...


Hierarchical Interest Graph From Tweets, Pavan Kapanipathi, Prateek Jain, Chitra Venkataramani, Amit P. Sheth Apr 2014

Hierarchical Interest Graph From Tweets, Pavan Kapanipathi, Prateek Jain, Chitra Venkataramani, Amit P. Sheth

Kno.e.sis Publications

Industry and researchers have identified numerous ways to monetize microblogs for personalization and recommendation. A common challenge across these different works is the identification of user interests. Although techniques have been developed to address this challenge, a flexible approach that spans multiple levels of granularity in user interests has not been forthcoming. In this work, we focus on exploiting hierarchical semantics of concepts to infer richer user interests expressed as a Hierarchical Interest Graph. To create such graphs, we utilize users' tweets to first ground potential user interests to structured background knowledge such as Wikipedia Category Graph. We then adapt ...


Cursing In English On Twitter, Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, Amit P. Sheth Feb 2014

Cursing In English On Twitter, Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, Amit P. Sheth

Kno.e.sis Publications

Cursing is not uncommon during conversations in the physical world: 0.5% to 0.7% of all the words we speak are curse words, given that 1% of all the words are first-person plural pronouns (e.g., we, us, our). On social media, people can instantly chat with friends without face-to-face interaction, usually in a more public fashion and broadly disseminated through highly connected social network. Will these distinctive features of social media lead to a change in people's cursing behavior? In this paper, we examine the characteristics of cursing activity on a popular social media platform - Twitter, involving ...


Location Prediction Of Twitter Users Using Wikipedia, Revathy Krishnamurthy, Pavan Kapanipathi, Amit P. Sheth, Krishnaprasad Thirunarayan Jan 2014

Location Prediction Of Twitter Users Using Wikipedia, Revathy Krishnamurthy, Pavan Kapanipathi, Amit P. Sheth, Krishnaprasad Thirunarayan

Kno.e.sis Publications

The mining of user generated content in social media has proven very effective in domains ranging from personalization and recommendation systems to crisis management. The knowledge of online users locations makes their tweets more informative and adds another dimension to their analysis. Existing approaches to predict the location of Twitter users are purely data-driven and require large training data sets of geo-tagged tweets. The collection and modelling process of tweets can be time intensive. To overcome this drawback, we propose a novel knowledge based approach that does not require any training data. Our approach uses information in Wikipedia, about cities ...


User Taglines: Alternative Presentations Of Expertise And Interest In Social Media, Hemant Purohit, Alex Dow, Omar Alonso, Lei Duan, Kevin Haas Dec 2012

User Taglines: Alternative Presentations Of Expertise And Interest In Social Media, Hemant Purohit, Alex Dow, Omar Alonso, Lei Duan, Kevin Haas

Kno.e.sis Publications

Web applications are increasingly showing recommended users from social media along with some descriptions, an attempt to show relevancy - why they are being shown. For example, Twitter search for a topical keyword shows expert twitterers on the side for 'whom to follow'. Google+ and Facebook also recommend users to follow or add to friend circle. Popular Internet newspaper- The Huffington Post shows Twitter influencers/ experts on the side of an article for authoritative relevant tweets. The state of the art shows user profile bios as summary for Twitter experts, but it has issues with length constraint imposed by user interface ...


What Kind Of #Communication Is Twitter? A Psycholinguistic Perspective On Communication In Twitter For The Purpose Of Emergency Coordination, Hemant Purohit, Andrew Hampton, Valerie L. Shalin, Amit P. Sheth, John Flach Jul 2012

What Kind Of #Communication Is Twitter? A Psycholinguistic Perspective On Communication In Twitter For The Purpose Of Emergency Coordination, Hemant Purohit, Andrew Hampton, Valerie L. Shalin, Amit P. Sheth, John Flach

Kno.e.sis Publications

The present research aims to detect coordinated citizen response within social media traffic to assist emergency response. We use domain-independent linguistic properties as the first step in narrowing the candidate set of messages for domain-dependent and computationally intensive analysis.


Prediction Of Topic Volume On Twitter, Yiye Ruan, Hemant Purohit, David Fuhry, Srinivasan Parthasarathy, Amit P. Sheth Jun 2012

Prediction Of Topic Volume On Twitter, Yiye Ruan, Hemant Purohit, David Fuhry, Srinivasan Parthasarathy, Amit P. Sheth

Kno.e.sis Publications

We discuss an approach for predicting microscopic (individual) and macroscopic (collective) user behavioral patterns with respect to specific trending topics on Twitter. Going beyond previous efforts that have analyzed driving factors in whether and when a user will publish topic-relevant tweets, here we seek to predict the strength of content generation which allows more accurate understanding of Twitter users' behavior and more effective utilization of the online social network for diffusing information. Unlike traditional approaches, we consider multiple dimensions into one regression-based prediction framework covering network structure, user interaction, content characteristics and past activity. Experimental results on three large Twitter ...


Extracting Diverse Sentiment Expressions With Target-Dependent Polarity From Twitter, Lu Chen, Wenbo Wang, Meenakshi Nagarajan, Shaojun Wang, Amit P. Sheth Jan 2012

Extracting Diverse Sentiment Expressions With Target-Dependent Polarity From Twitter, Lu Chen, Wenbo Wang, Meenakshi Nagarajan, Shaojun Wang, Amit P. Sheth

Kno.e.sis Publications

This study focuses on automatic extraction of sentiment expressions associated with given targets from Twitter. It addresses one of the key challenges in this work: Wide diversity and informal nature of sentiment expressions that cannot be trivially enumerated or captured using predefined lexical patterns.


Personalized Filtering Of The Twitter Stream, Pavan Kapanipathi, Fabrizio Orlandi, Amit P. Sheth, Alexandre Passant Oct 2011

Personalized Filtering Of The Twitter Stream, Pavan Kapanipathi, Fabrizio Orlandi, Amit P. Sheth, Alexandre Passant

Kno.e.sis Publications

With the rapid growth in users on social networks, there is a corresponding increase in user-generated content, in turn resulting in information overload. On Twitter, for example, users tend to receive uninterested information due to their non-overlapping interests from the people whom they follow. In this paper we present a Semantic Web approach to filter public tweets matching interests from personalized user profiles. Our approach includes automatic generation of multi-domain and personalized user profiles, filtering Twitter stream based on the generated profiles and delivering them in real-time. Given that users interests and personalization needs change with time, we also discuss ...


Linked Open Social Signals, Pablo N. Mendes, Alexandre Passant, Pavan Kapanipathi, Amit P. Sheth Jan 2010

Linked Open Social Signals, Pablo N. Mendes, Alexandre Passant, Pavan Kapanipathi, Amit P. Sheth

Kno.e.sis Publications

In this paper we discuss the collection, semantic annotation and analysis of real-time social signals from micro-blogging data. We focus on users interested in analyzing social signals collectively for sensemaking. Our proposal enables flexibility in selecting subsets for analysis, alleviating information overload. We define an architecture that is based on state-of-the-art Semantic Web technologies and a distributed publish subscribe protocol for real time communication. In addition, we discuss our method and application in a scenario related to the health care reform in the United States.


A Qualitative Examination Of Topical Tweet And Retweet Practices, Meenakshi Nagarajan, Hemant Purohit, Amit P. Sheth Jan 2010

A Qualitative Examination Of Topical Tweet And Retweet Practices, Meenakshi Nagarajan, Hemant Purohit, Amit P. Sheth

Kno.e.sis Publications

This work contributes to the study of retweet behavior on Twitter surrounding real-world events. We analyze over a million tweets pertaining to three events, present general tweet properties in such topical datasets and qualitatively analyze the properties of the retweet behavior surrounding the most tweeted/viral content pieces. Findings include a clear relationship between sparse/dense retweet patterns and the content and type of a tweet itself; suggesting the need to study content properties in link-based diffusion models.