Open Access. Powered by Scholars. Published by Universities.®

Science and Technology Studies Commons

Open Access. Powered by Scholars. Published by Universities.®

Kno.e.sis Publications

Social Media

Articles 1 - 12 of 12

Full-Text Articles in Science and Technology Studies

What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, And Prevention, Michele Miller, Tanvi Banerjee, Roopteja Muppalla, William L. Romine, Amit Sheth Apr 2017

What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, And Prevention, Michele Miller, Tanvi Banerjee, Roopteja Muppalla, William L. Romine, Amit Sheth

Kno.e.sis Publications

Background: In order to harness what people are tweeting about Zika, there needs to be a computational framework that leverages machine learning techniques to recognize relevant Zika tweets and, further, categorize these into disease-specific categories to address specific societal concerns related to the prevention, transmission, symptoms, and treatment of Zika virus.

Objective: The purpose of this study was to determine the relevancy of the tweets and what people were tweeting about the 4 disease characteristics of Zika: symptoms, transmission, prevention, and treatment.

Methods: A combination of natural language processing and machine learning techniques was used to determine what people were ...


Intent Classification Of Short-Text On Social Media, Hemant Purohit, Guozhu Dong, Valerie L. Shalin, Krishnaprasad Thirunarayan, Amit P. Sheth Dec 2015

Intent Classification Of Short-Text On Social Media, Hemant Purohit, Guozhu Dong, Valerie L. Shalin, Krishnaprasad Thirunarayan, Amit P. Sheth

Kno.e.sis Publications

Social media platforms facilitate the emergence of citizen communities that discuss real-world events. Their content reflects a variety of intent ranging from social good (e.g., volunteering to help) to commercial interest (e.g., criticizing product features). Hence, mining intent from social data can aid in filtering social media to support organizations, such as an emergency management unit for resource planning. However, effective intent mining is inherently challenging due to ambiguity in interpretation, and sparsity of relevant behaviors in social data. In this paper, we address the problem of multiclass classification of intent with a use-case of social data generated ...


On Using Synthetic Social Media Stimuli In An Emergency Preparedness Functional Exercise, Andrew Hampton, Shreyansh Bhatt, Gary Alan Smith, Jeremy S. Brunn, Hemant Purohit, Valerie L. Shalin, John M. Flach, Amit P. Sheth Feb 2015

On Using Synthetic Social Media Stimuli In An Emergency Preparedness Functional Exercise, Andrew Hampton, Shreyansh Bhatt, Gary Alan Smith, Jeremy S. Brunn, Hemant Purohit, Valerie L. Shalin, John M. Flach, Amit P. Sheth

Kno.e.sis Publications

This paper details the creation and use of a massive (over 32,000 messages) artificially constructed 'Twitter' microblog stream for a regional emergency preparedness functional exercise. By combining microblog conversion, manual production, and a control set, we created a web based information stream providing valid, misleading, and irrelevant information to public information officers (PIOs) representing hospitals, fire departments, the local Red Cross, and city and county government officials. PIOs searched, monitored, and (through conventional channels) verified potentially actionable information that could then be redistributed through a personalized screen name. Our case study of a key PIO reveals several capabilities that ...


Gender-Based Violence In 140 Characters Or Fewer: A #Bigdata Case Study Of Twitter, Hemant Purohit, Tanvi Banerjee, Andrew Hampton, Valerie L. Shalin, Nayanesh Bhandutia, Amit P. Sheth Jan 2015

Gender-Based Violence In 140 Characters Or Fewer: A #Bigdata Case Study Of Twitter, Hemant Purohit, Tanvi Banerjee, Andrew Hampton, Valerie L. Shalin, Nayanesh Bhandutia, Amit P. Sheth

Kno.e.sis Publications

Public institutions are increasingly reliant on data from social media sites to measure public attitude and provide timely public engagement. Such reliance includes the exploration of public views on important social issues such as gender-based violence (GBV). In this study, we examine big (social) data consisting of nearly fourteen million tweets collected from Twitter over a period of ten months to analyze public opinion regarding GBV, highlighting the nature of tweeting practices by geographical location and gender. We demonstrate the utility of Computational Social Science to mine insight from the corpus while accounting for the influence of both transient events ...


Discovering Perceptions In Online Social Media: A Probabilistic Approach, Derek Doran, Swapna S. Gokhale, Aldo Dagnino Nov 2014

Discovering Perceptions In Online Social Media: A Probabilistic Approach, Derek Doran, Swapna S. Gokhale, Aldo Dagnino

Kno.e.sis Publications

People across the world habitually turn to online social media to share their experiences, thoughts, ideas, and opinions as they go about their daily lives. These posts collectively contain a wealth of insights into how masses perceive their surroundings. Therefore, extracting people’s perceptions from social media posts can provide valuable information about pertinent issues such as public transportation, emergency conditions, and even reactions to political actions or other activities. This paper proposes a novel approach to extract such perceptions from a corpus of social media posts originating from a given broad geographical region. The approach divides the broad region ...


Assisting Coordination During Crisis: A Domain Ontology Based Approach To Infer Resource Needs From Tweets, Shreyansh Bhatt, Hemant Purohit, Andrew J. Hampton, Valerie L. Shalin, Amit P. Sheth, John Flach Jun 2014

Assisting Coordination During Crisis: A Domain Ontology Based Approach To Infer Resource Needs From Tweets, Shreyansh Bhatt, Hemant Purohit, Andrew J. Hampton, Valerie L. Shalin, Amit P. Sheth, John Flach

Kno.e.sis Publications

Ubiquitous social media during crises provides citizen reports on the situation, needs and supplies. Previous research extracts resource needs directly from the text (e.g. "Power cut to Coney Island and Brighton beach" indicates a power need). This approach assumes that citizens derive and write about specific needs from their observations, properly specified for the emergency response system, an assumption that is not consistent with general conversational behavior. In our study, Twitter messages (tweets) from Hurricane Sandy in 2012 clearly indicate power blackouts, but not their probable implications (e.g. loss of power to hospital life support systems). We use ...


Cursing In English On Twitter, Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, Amit P. Sheth Feb 2014

Cursing In English On Twitter, Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, Amit P. Sheth

Kno.e.sis Publications

Cursing is not uncommon during conversations in the physical world: 0.5% to 0.7% of all the words we speak are curse words, given that 1% of all the words are first-person plural pronouns (e.g., we, us, our). On social media, people can instantly chat with friends without face-to-face interaction, usually in a more public fashion and broadly disseminated through highly connected social network. Will these distinctive features of social media lead to a change in people's cursing behavior? In this paper, we examine the characteristics of cursing activity on a popular social media platform - Twitter, involving ...


Crisis Response Coordination In Online Communities, Hemant Purohit Jun 2013

Crisis Response Coordination In Online Communities, Hemant Purohit

Kno.e.sis Publications

During recent crises, citizens (sensors) are increasingly using social media to share variety of information- situation on the ground, emerging needs, donation offers, damage, etc. In such an evolving ad-hoc community, how can we extract actionable nuggets from the social media streams to aid relief efforts? This doctoral consortium presentation summarizes a framework to analyze social data and manage information to assist coordination by focusing on three important questions to answer: Whom to coordinate with, Why to coordinate and How to coordinate, with exemplary insights for needs and availability from the recent disaster events.


What Kind Of #Communication Is Twitter? A Psycholinguistic Perspective On Communication In Twitter For The Purpose Of Emergency Coordination, Hemant Purohit, Andrew Hampton, Valerie L. Shalin, Amit P. Sheth, John Flach Jul 2012

What Kind Of #Communication Is Twitter? A Psycholinguistic Perspective On Communication In Twitter For The Purpose Of Emergency Coordination, Hemant Purohit, Andrew Hampton, Valerie L. Shalin, Amit P. Sheth, John Flach

Kno.e.sis Publications

The present research aims to detect coordinated citizen response within social media traffic to assist emergency response. We use domain-independent linguistic properties as the first step in narrowing the candidate set of messages for domain-dependent and computationally intensive analysis.


Framework For The Analysis Of Coordination In Crisis Response, Hemant Purohit, Andrew Hampton, Valerie L. Shalin, Amit P. Sheth, John M. Flach Feb 2012

Framework For The Analysis Of Coordination In Crisis Response, Hemant Purohit, Andrew Hampton, Valerie L. Shalin, Amit P. Sheth, John M. Flach

Kno.e.sis Publications

Social Media play a critical role during crisis events, revealing a natural coordination dynamic. We propose a computational framework guided by social science principles to measure, analyze, and understand coordination among the different types of organizations and actors in crisis response. The analysis informs both the scientific account of cooperative behavior and the design of applications and protocols to support crisis management.


Dynamic Associative Relationships On The Linked Open Data Web, Pablo N. Mendes, Pavan Kapanipathi, Delroy H. Cameron, Amit P. Sheth Apr 2010

Dynamic Associative Relationships On The Linked Open Data Web, Pablo N. Mendes, Pavan Kapanipathi, Delroy H. Cameron, Amit P. Sheth

Kno.e.sis Publications

We provide a definition of context based on theme, time and location, and propose a mixed retrieval/extraction model for the dynamic suggestion of trending relationships to LOD resources.


Linked Open Social Signals, Pablo N. Mendes, Alexandre Passant, Pavan Kapanipathi, Amit P. Sheth Jan 2010

Linked Open Social Signals, Pablo N. Mendes, Alexandre Passant, Pavan Kapanipathi, Amit P. Sheth

Kno.e.sis Publications

In this paper we discuss the collection, semantic annotation and analysis of real-time social signals from micro-blogging data. We focus on users interested in analyzing social signals collectively for sensemaking. Our proposal enables flexibility in selecting subsets for analysis, alleviating information overload. We define an architecture that is based on state-of-the-art Semantic Web technologies and a distributed publish subscribe protocol for real time communication. In addition, we discuss our method and application in a scenario related to the health care reform in the United States.