Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Review

PDF

Business

Southern Methodist University

Articles 1 - 1 of 1

Full-Text Articles in Social and Behavioral Sciences

Yelp’S Review Filtering Algorithm, Yao Yao, Ivelin Angelov, Jack Rasmus-Vorrath, Mooyoung Lee, Daniel W. Engels Aug 2018

Yelp’S Review Filtering Algorithm, Yao Yao, Ivelin Angelov, Jack Rasmus-Vorrath, Mooyoung Lee, Daniel W. Engels

SMU Data Science Review

In this paper, we present an analysis of features influencing Yelp's proprietary review filtering algorithm. Classifying or misclassifying reviews as recommended or non-recommended affects average ratings, consumer decisions, and ultimately, business revenue. Our analysis involves systematically sampling and scraping Yelp restaurant reviews. Features are extracted from review metadata and engineered from metrics and scores generated using text classifiers and sentiment analysis. The coefficients of a multivariate logistic regression model were interpreted as quantifications of the relative importance of features in classifying reviews as recommended or non-recommended. The model classified review recommendations with an accuracy of 78%. We found that ...