Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Quantum Physics

Multidimensional, High Precision Measurements Of Beam Single Spin Asymmetries In Semi-Inclusive 𝜋⁺ Electroproduction Off Protons In The Valence Region, S. Diehl, A. Kim, G. Angelini, K. Joo, S. Adhikari, M. J. Amaryan, M. Arratia, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, S. Bastami, M. Battaglieri, I. Bedlinskiy, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, F. Bossù, Et Al. Jan 2022

Multidimensional, High Precision Measurements Of Beam Single Spin Asymmetries In Semi-Inclusive 𝜋⁺ Electroproduction Off Protons In The Valence Region, S. Diehl, A. Kim, G. Angelini, K. Joo, S. Adhikari, M. J. Amaryan, M. Arratia, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, S. Bastami, M. Battaglieri, I. Bedlinskiy, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, F. Bossù, Et Al.

Physics Faculty Publications

High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π+ SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q2 ranging from 1–7  GeV2. In particular, the structure function ratio FsinϕLU/FUU has been determined, where FsinϕLU is a twist-3 …


Form Factors And Two-Photon Exchange In High-Energy Elastic Electron-Proton Scattering, M. E. Christy, T. Gautam, L. Ou, S.L. Allison, D. Bulumulla, F. Hauenstein, C. Hyde, K. Park, M.N.H. Rashad, J. Zhang, Y. X. Zhao, P. Zhu, Et Al. Jan 2022

Form Factors And Two-Photon Exchange In High-Energy Elastic Electron-Proton Scattering, M. E. Christy, T. Gautam, L. Ou, S.L. Allison, D. Bulumulla, F. Hauenstein, C. Hyde, K. Park, M.N.H. Rashad, J. Zhang, Y. X. Zhao, P. Zhu, Et Al.

Physics Faculty Publications

We present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q2) up to 15.75  (GeV/c)2. Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q2 and double the range over which a longitudinal or transverse separation of the cross section can be performed. The difference between our results and polarization data agrees with that observed at lower Q2 and attributed to hard two-photon exchange (TPE) effects, extending to 8 (GeV/c)2 the range of Q2 for which a discrepancy …


Deeply Virtual Compton Scattering Cross Section At High Bjorken 𝓍B, F. Georges, M.N.H. Rashad, A. Stefanko, J. Zhang, Y. Zhao, P. Zhu, Et Al. Jan 2022

Deeply Virtual Compton Scattering Cross Section At High Bjorken 𝓍B, F. Georges, M.N.H. Rashad, A. Stefanko, J. Zhang, Y. Zhao, P. Zhu, Et Al.

Physics Faculty Publications

We report high-precision measurements of the deeply virtual Compton scattering (DVCS) cross section at high values of the Bjorken variable 𝓍B. DVCS is sensitive to the generalized parton distributions of the nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic expression of the DVCS cross section for all possible polarization states of the initial and final electron and nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving Compton form factors (CFFs) of the nucleon as a function of 𝓍B, while systematically including helicity flip amplitudes. …


Measurement Of Deeply Virtual Compton Scattering Off 4He With The Cebaf Large Acceptance Spectrometer At Jefferson Lab, Clas Collaboration, R. Dupré, Mohammad Hattawy, N. A. Batzell, Stephen Bültmann, Bayram Torayev, Moskov Amaryan, Dilini L. Bulumulla, M. Mayer, David C. Payette, Yelena Prok, Jiwan Poudel, Lawrence B. Weinstein, B. Yale, N. Zachariou, J. Zhang, Et Al. Jan 2021

Measurement Of Deeply Virtual Compton Scattering Off 4He With The Cebaf Large Acceptance Spectrometer At Jefferson Lab, Clas Collaboration, R. Dupré, Mohammad Hattawy, N. A. Batzell, Stephen Bültmann, Bayram Torayev, Moskov Amaryan, Dilini L. Bulumulla, M. Mayer, David C. Payette, Yelena Prok, Jiwan Poudel, Lawrence B. Weinstein, B. Yale, N. Zachariou, J. Zhang, Et Al.

Physics Faculty Publications

We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off 4He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a pressurized 4He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling 4He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the …


On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman Jan 2021

On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman

Physics Faculty Publications

This work explores scattering amplitudes that couple two-particle systems via a single external current insertion, 2 + J → 2. Such amplitudes can provide structural information about the excited QCD spectrum. We derive an exact analytic representation for these reactions. From these amplitudes, we show how to rigorously define resonance and bound-state form factors. Furthermore, we explore the consequences of the narrow-width limit of the amplitudes as well as the role of the Ward-Takahashi identity for conserved vector currents. These results hold for any number of two-body channels with no intrinsic spin, and a current with arbitrary Lorentz structure and …


Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama Jan 2019

Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama

Physics Faculty Publications

In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that are experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.


Relativistic, Model-Independent, Multichannel 2 → 2 Transition Amplitudes In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen Jan 2016

Relativistic, Model-Independent, Multichannel 2 → 2 Transition Amplitudes In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen

Physics Faculty Publications

We derive formalism for determining 2+𝓙 → 2 infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or nonidentical and, in the latter case, can be either degenerate or nondegenerate. We further accommodate any number of strongly coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of the ρ-meson form factor, in which the unstable nature of …


3he Spin-Dependent Cross Sections And Sum Rules, K. Slifer, M. Amarian, L. Auerbach, T. Averett, J. Berthot, P. Bertin, B. Bertozzi, K. Mccormick, F. Sabatié, L. Todor Jul 2008

3he Spin-Dependent Cross Sections And Sum Rules, K. Slifer, M. Amarian, L. Auerbach, T. Averett, J. Berthot, P. Bertin, B. Bertozzi, K. Mccormick, F. Sabatié, L. Todor

Physics Faculty Publications

We present a measurement of the spin-dependent cross sections for the 3→He(→e,e′)X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1≤Q2≤0.9  GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.


Ep → Ep Π⁰ Reaction Studied In The Δ(1232) Mass Region Using Polarization Asymmetries, M. Bektasoglu, L. Ciciani, K.V. Dharmawardane, G. E. Dodge, T.A. Forest, C.E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, S. Stepanyan, L. B. Weinstein, Et Al., Clas Collaboration Jan 2003

Ep → Ep Π⁰ Reaction Studied In The Δ(1232) Mass Region Using Polarization Asymmetries, M. Bektasoglu, L. Ciciani, K.V. Dharmawardane, G. E. Dodge, T.A. Forest, C.E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, S. Stepanyan, L. B. Weinstein, Et Al., Clas Collaboration

Physics Faculty Publications

Measurements of the angular distributions of target and double-spin asymmetries for the Δ+(1232) in the exclusive channel p(e,e'p)π0 obtained at the Jefferson Lab in the Q2 range from 0.5 to 1.5 GeV2/c2 are presented. Results of the asymmetries are compared with the unitary isobar model [D. Drechsel , Nucl. Phys. A645, 145 (1999)], dynamical models [T. Sato and T. S. Lee, Phys. Rev. C 54, 2660 (1996); S. S. Kamalov , Phys. Lett. B 27, 522 (2001)], and the effective Lagrangian theory [R. M. Davidson , Phys. Rev. …


First Measurement Of The Double Spin Asymmetry In EP → E ‘Π⁺ In The Resonance Region, G. E. Dodge, K. V. Dharmawardane, T. A. Forest, C. E. Hyde-Wright, A. Klein, S. E. Kuhn, R. A. Niyazov, L. B. Weinstein, J. Yun, Et. Al., Clas Collaboration Jan 2002

First Measurement Of The Double Spin Asymmetry In →E→P → E ‘Π⁺ In The Resonance Region, G. E. Dodge, K. V. Dharmawardane, T. A. Forest, C. E. Hyde-Wright, A. Klein, S. E. Kuhn, R. A. Niyazov, L. B. Weinstein, J. Yun, Et. Al., Clas Collaboration

Physics Faculty Publications

The double spin asymmetry in the ep → e' π+n reaction has been measured for the first time in the resonance region for four-momentum transfer Q2 = 0.35-1.5 GeV2. Data were taken at Jefferson Lab with the CLAS detector using a 2.6 GeV polarized electron beam incident on a polarized solid NH3 target. Comparison with predictions of phenomenological models shows strong sensitivity to resonance contributions. Helicity-1/2 transitions are found to be dominant in the second and third resonance regions. The measured asymmetry is consistent with a faster rise with Q2 …