Open Access. Powered by Scholars. Published by Universities.®

Other Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Other Physics

Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations, Michael G. Brown Jun 2023

Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations, Michael G. Brown

Dissertations, Theses, and Capstone Projects

This dissertation examined the seasonal freeze/thaw activity in boreal-Arctic soils and vegetation physiology in Alaska, USA and Alberta, Canada, using in situ environmental measurements and passive microwave satellite observations. The boreal-Arctic high-latitudes have been experiencing ecosystem changes more rapidly in comparison to the rest of Earth due to the presently warming climatic conditions having a magnified effect over Polar Regions. Currently, the boreal-Arctic is a carbon sink; however, recent studies indicate a shift over the next century to become a carbon source. High-latitude vegetation and cold soil dynamics are influenced by climatic shifts and are largely responsible for the regions …


Beam-Based Target Alignment For Mu2e, Helenka Casler Feb 2023

Beam-Based Target Alignment For Mu2e, Helenka Casler

Dissertations, Theses, and Capstone Projects

The Mu2e Experiment is a precision experiment at Fermi National Accelerator Laboratory, searching for charged lepton flavor violation (CLFV) in the conversion of a muon to an electron in the presence of an atomic nucleus. In order to achieve the expected single-event sensitivity of 3 × 10-17 , Mu2e will require an intense muon beam, generated via pion decay. These pions are the product of a proton beam striking a radiatively-cooled tungsten target. In order to maximize pion production and prevent target failure, the beam will have to be aligned with the target center to within 0.5 mm. The …


A Quantum Approach To Language Modeling, Constantijn Van Der Poel Feb 2023

A Quantum Approach To Language Modeling, Constantijn Van Der Poel

Dissertations, Theses, and Capstone Projects

This dissertation consists of six chapters. . . Chapter 1: We introduce language modeling, outline the software used for this thesis, and discuss related work. Chapter 2: We will unpack the transition from classical to quantum probabilities, as well as motivate their use in building a model to understand language-like datasets. Chapter 3: We motivate the Motzkin dataset, the models we will be investigating, as well as the necessary algorithms to do calculations with them. Chapter 4: We investigate our models’ sensitivity to various hyperparameters. Chapter 5: We compare the performance and robustness of the models. Chapter 6: We conclude …


Nmr Characterization Of Novel Materials For Battery Electrolyte Applications, Sahana Bhattacharyya Sep 2022

Nmr Characterization Of Novel Materials For Battery Electrolyte Applications, Sahana Bhattacharyya

Dissertations, Theses, and Capstone Projects

The extensive application of renewable and non-renewable energy storage devices in commercial products and services and the global warming have created significant motivations to accelerate research in battery technology. In addition, the risk factors generated by the high heat generation and flammability of the batteries are being addressed by inventing new renewable or non-renewable energy resources that do not release greenhouse gases into the atmosphere. This thesis discusses the applications of Nuclear Magnetic Resonance (NMR) Spectroscopy in characterizing and understanding novel battery materials as potential battery electrolytes. Works discussed include: the variable temperature characterization of water-based solid polymer electrolyte for …


Density Functional Theory Study Of Two-Dimensional Boron Nitride Films, Pradip R. Niraula Feb 2020

Density Functional Theory Study Of Two-Dimensional Boron Nitride Films, Pradip R. Niraula

Dissertations, Theses, and Capstone Projects

Since graphene was isolated in 2004, the number of two-dimensional (2D) materials and their scientific relevance have grown exponentially. Besides graphene, one of the most important and technolocially promizing 2D materials that has emerged in recent years is hexagonal boron nitride, in its monolayer or multilayer form. In my thesis work, I used density functional theory (DFT) calculations to investigate the properties of boron nitride films. In particular, I first studied the properties (i.e. formation energy, defect states, and structure) of point charged defects in monolayer and bilayer hexagonal boron nitride, and subsequently, I focused on the linear and nonlinear …


Sequential Discrimination Between Non-Orthogonal Quantum States, Dov L. Fields Sep 2019

Sequential Discrimination Between Non-Orthogonal Quantum States, Dov L. Fields

Dissertations, Theses, and Capstone Projects

The problem of discriminating between non-orthogonal states is one that has generated a lot of interest. This basic formalism is useful in many areas of quantum information. It serves as a fundamental basis for many quantum key distribution schemes, it functions as an integral part of other quantum algorithms, and it is useful in experimental settings where orthogonal states are not always possible to generate. Additionally, the discrimination problem reveals important fundamental properties, and is intrinsically related to entanglement. In this thesis, the focus is on exploring the problem of sequentially discriminating between non-orthogonal states. In the simplest version these …


Topological Insulating States In Photonics And Acoustics, Xiang Ni May 2019

Topological Insulating States In Photonics And Acoustics, Xiang Ni

Dissertations, Theses, and Capstone Projects

Recent surge of interest in topological insulators, insulating in their interior but conducting at the surfaces or interfaces of different domains, has led to the discovery of a variety of new topological states, and their topological invariants are characterized by numerous approaches in the category of topological band theory. The common features shared by topological insulators include, the topological phase transition occurs if the bulk bandgap is formed due to the symmetries reduction, the topological invariants exist characterizing the global properties of the material and inherently robust to disorder and continuous perturbations irrespective of the local details. Most importantly, these …


Characterization Of Hydrophobic Interactions Of Polymers With Water And Phospholipid Membranes Using Molecular Dynamics Simulations, Mihaela Drenscko Sep 2017

Characterization Of Hydrophobic Interactions Of Polymers With Water And Phospholipid Membranes Using Molecular Dynamics Simulations, Mihaela Drenscko

Dissertations, Theses, and Capstone Projects

Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. …


Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione Sep 2017

Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione

Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium electrode and electrolyte materials for advanced rechargeable lithium ion batteries. Three projects are described in this thesis. The first involves 23Na and 37Al static and magic angle spinning NMR studies of NaAlH4/C anode materials for advanced rechargeable batteries. The second project is a study of paramagnetic lithium transition-metal phosphate cathode materials for Li-ion batteries, where 7Li, and 31P single crystal NMR was used in order to obtain detailed information on the local electronic and magnetic environments. The third project investigates …


Photonic Crystals With Alternate Arrays Of Rods And Holes In A Low Dielectric-Index Material, Dimitar L. Dimitrov Sep 2016

Photonic Crystals With Alternate Arrays Of Rods And Holes In A Low Dielectric-Index Material, Dimitar L. Dimitrov

Dissertations, Theses, and Capstone Projects

This thesis theoretically deals with the propagation of electromagnetic waves (light beams) in periodically modulated dielectric material structures based on Maxwell’s equations. We are interested in novel light propagation characteristics in these man-made dielectric material structures for practical applications, especially on optical communications and computations. Since the wavelength range of light is on the same order of magnitude as the modulation periods of dielectric materials, an analogy of the light propagation in dielectric-constant modulated structures with the electron transport in solid-state crystals is used throughout my thesis by using a term “photonic crystals (PhCs)” referring to these dielectric structures. I …


Novel Electrolytes For Use In New And Improved Batteries: An Nmr Study, Marc B. Berman Feb 2016

Novel Electrolytes For Use In New And Improved Batteries: An Nmr Study, Marc B. Berman

Dissertations, Theses, and Capstone Projects

This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. …


Quantum Crystallography Of Hydronium Cations, Sonjae Sycoria Wallace Oct 2014

Quantum Crystallography Of Hydronium Cations, Sonjae Sycoria Wallace

Dissertations, Theses, and Capstone Projects

Cationic hydronium clusters of the form [HaOb]^c,(c>0), have been investigated. After investigating over 2000 crystal structures containing hydronium cations found in the Cambridge Structural Database. The hydronium cationic compounds that were most unusual, mischaracterized, or those of apparent aggregates, were investigated further by geometry optimization and in some cases with the Quantum Theory of Atoms in Molecules (QTAIM). The results of our investigations yielded the first reports of stable conformations of cyclic dihydronium cationic clusters. In a second investigation we reported the first theoretically confirmed transition state of a H7O3+conformer captured within a crystal. A third product from our …


Yang-Mills Theories As Deformations Of Massive Integrable Models, Axel Cortes Cubero Jun 2014

Yang-Mills Theories As Deformations Of Massive Integrable Models, Axel Cortes Cubero

Dissertations, Theses, and Capstone Projects

Yang Mills theory in 2+1 dimensions can be expressed as an array of coupled (1+1)-dimensional principal chiral sigma models. The SU(N) principal chiral sigma model in 1+1 dimensions is integrable, asymptotically free and has massive excitations. We calculate all the form factors and two- point correlation functions of the Noether current and energy-momentum tensor, in

't Hooft's large-N limit (some form factors can be found even at finite N). We use these new form factors to calculate physical quantities in (2+1)-dimensional Yang-Mills theory, generalizing previous SU(2) by P. Orland to SU(N). The anisotropic gauge theory is related to standard isotropic …


Dynamics And Manipulation Of Nanomagnets, Liufei Cai Jun 2014

Dynamics And Manipulation Of Nanomagnets, Liufei Cai

Dissertations, Theses, and Capstone Projects

This thesis presents my work on the spin dynamics of nanomagnets and investigates the possibility of manipulating nanomagnets by various means. Most of the work has been published\cite{LC-PRB2010, LC-PRB2012, LC-PRB2013, LC-EPL2014}. Some has been submitted for publication\cite{LC-arxiv2014}. The structure of this thesis is as follows.

In Chapter 1, I present the theory of manipulation of a nanomagnet by rotating ac fields whose frequency is time dependent. Theory has been developed that maps the problem onto Landau-Zener problem. For the linear frequency sweep the switching phase diagrams are obtained on the amplitude of the ac field and the frequency sweep rate. …


Gauge/ Gravity Correspondence, Bulk Locality And Quantum Black Holes, Debajyoti Sarkar Feb 2014

Gauge/ Gravity Correspondence, Bulk Locality And Quantum Black Holes, Debajyoti Sarkar

Dissertations, Theses, and Capstone Projects

The aim of this dissertation is threefold. We begin by the study of two parallel ideal cosmic strings in the presence of non-minimal scalar fields and spin- 1 gauge fields. We show that the contributions of the non-minimal term on the interaction energy between the strings are similar to that of the gauge field for a particular value of non-minimal coupling parameter. In this context we clarify some of the issues that arise when comparing the renormalization of black hole entropy and entanglement entropy using the replica trick.

In the second part of the dissertation we study the process of …