Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Engineering Physics

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali

Physics Faculty Publications

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance …


Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland Dec 2020

Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland

The STEAM Journal

This research paper explores drawing as a tool to facilitate interdisciplinary practice. Outlined is the personal experience of PhD researcher [name removed] in their physics/craft research project, combined with thoughts and opinions from collaborators gathered through group discursive interviews. Interdisciplinary projects face interpersonal and conceptually ambiguous challenges which can be addressed through adopting drawing techniques for educational purposes. Findings highlight that drawing can assist across a breadth of applications as a learning tool for everyone, regardless of drawing ability, to improve the functionality of collaborative projects. Specifically, drawing combined with other communication techniques develops a performative communicative approach that enriches …


Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin Jun 2020

Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin

Mechanical Engineering

Studies suggest that when designed and executed well, hands-on activities can enhance student understanding of key mechanics concepts. Current products are expensive and typically not designed to meet a variety of learning objectives. Through the Mechanics of Inclusion and Inclusivity in Mechanics grant, the Cal Poly Physics and Engineering Departments are seeking to incorporate new hands-on activities into their courses. Our team has designed three inexpensive ”MechaniKits” to be used in physics, statics and dynamics courses [1]. This Final Design Review outlines our findings, objectives, and final designs for this project. It also explains our manufacturing and design verification plans. …


Observation Of In-Plane Magnetic Field Induced Phase Transitions In Fese, Jong Mok Ok, Chang Il Kwon, Yoshimitsu Kohama, Jung Sang You, Sun Kyu Park, Ji-Hye Kim, Y.J. Jo, E.S. Choi, Koichi Kindo, Woun Kang, Ki-Seok Kim, E. G. Moon, Alex Gurevich, Jun Sung Kim Jan 2020

Observation Of In-Plane Magnetic Field Induced Phase Transitions In Fese, Jong Mok Ok, Chang Il Kwon, Yoshimitsu Kohama, Jung Sang You, Sun Kyu Park, Ji-Hye Kim, Y.J. Jo, E.S. Choi, Koichi Kindo, Woun Kang, Ki-Seok Kim, E. G. Moon, Alex Gurevich, Jun Sung Kim

Physics Faculty Publications

We investigate thermodynamic properties of FeSe under in-plane magnetic fields using torque magnetometry, specific heat, and magnetocaloric measurements. Below the upper critical field Hc2, we observed the field induced anomalies at H1 ∼ 15 T and H2 ∼ 22 T near H ∥ ab and below a characteristic temperature T* ∼ 2 K. The transition magnetic fields H1 and H2 exhibit negligible dependence on both temperature and field orientation. This contrasts to the strong temperature and angle dependence of Hc2, suggesting that these anomalies are attributed to the field induced phase transitions, …


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps, …


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. May 2019

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang May 2019

Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang

Senior Theses

Controlled mechanical motion is vital in many useful applications in technology. Among them, linear motors have advantages over traditional rotating motors. In this work, we built a permanent magnet linear motor to test and measure its energy efficiency. A maximum 29% total energy efficiency, and 67% energy transfer rate, were detected. In addition, a C-shape support structure was added to the moving part in order to increase the moving accuracy. The tests show that, with the support structure, the fluctuation in the vertical direction decreases significantly, but the friction of the system slightly increases.


Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji Jan 2019

Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji

Electrical & Computer Engineering Faculty Publications

Tungsten oxide is a versatile material with different applications. It has many polymorphs with varying performance in energy storage application. We report simple and facile way to synthesize four phases of tungsten oxide from same precursor materials only by changing the pH and temperature values. Monoclinic, hexagonal, orthorhombic and tetragonal phase obtained, were analyzed and tested for supercapacitor application. The electrochemical analysis of four phases indicates that the hexagonal phase is best-suited electrode material for supercapacitor. The hexagonal phase exhibits higher specific capacitance (377.5 Fg-1 at 2 mVs-1), higher surface capacitive contribution (75%), better stability and rate …


Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks Jun 2018

Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks

The International Student Science Fair 2018

We have innovated “The Energy Conversion System for Travelers” or the ECoST. With the fact that most travelers have wheeled cabin-bags, whilst walking, the wheels will rotate so why don’t we harvest electricity from this kinetic energy? We thus install our innovation, the ECoST, to the bag to generate electricity from the spinning wheels. The electricity is then kept in the storage unit and ready to charge your empty battery devices in an emergency case via a USB port. To make life easy, our ECoST was designed to replicate the power bank charging method; therefore, we can charge …


Increasing The Longevity Of Tungsten Filaments In A Zone Refiner, Byron D. Greenlee May 2018

Increasing The Longevity Of Tungsten Filaments In A Zone Refiner, Byron D. Greenlee

Senior Theses

Zone refining is used for its ability to purify material and grow single crystals. To produce these single crystals, a suspended molten zone, generated by electron bombardment, passes along the polycrystalline stock. During a zone refining run, the filaments that produce the electron bombardment can fail. In this project, the longevity of tungsten filaments in a zone refiner was investigated. A new bombardment geometry was constructed to attempt to increase the longevity of the filaments. The new geometry had a shield machined into it to prevent line-of-sight impurities originating in the molten zone from striking the filaments. It was found …


Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett May 2018

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett

Senior Theses

This project tests and explores resonance of strings. Since all materials and mechanisms are affected by vibrations, it is important to know the frequencies at which resonance occurs. To explore this subject, strings were used as a model material to test the effect tension has on resonance. The fundamental frequencies and the corresponding modes of resonance were used to analyze the data. The results of this experiment show that increasing tension on a string increases its resonance frequency. Understanding the physics behind resonance frequency allows systems to be designed to take advantage of resonance properties, or to avoid resonance where …


The Effects Of Surface Pace In Baseball, Jason Farlow May 2018

The Effects Of Surface Pace In Baseball, Jason Farlow

Senior Theses

A baseball travels across different surfaces at different paces. The goal of this experiment is to find a percentage difference in speeds the ball will reflect off a given surface. The energy lost on the turf surface was far more significant than on dirt surface as the turf lost an average of 26% of its energy as compared to just 16% of the energy on dirt. In the Northwest conference, teams play on four turf-based infields and five dirt-based infields. The results of this study suggest that kinetic friction forces are more significant in reducing ball rebound speed than in …


Measuring The Double Layer Capacitance Of Electrolytes With Varied Concentrations, Geoffrey Rath May 2018

Measuring The Double Layer Capacitance Of Electrolytes With Varied Concentrations, Geoffrey Rath

Senior Theses

When electric potentials are applied from an electrolytic fluid to a metal, a double layer capacitor, Cdl, develops at the interface. The layer directly at the interface is called the Stern layer and has a thickness equal to roughly the size of the ions in the fluid. The next layer, the diffuse layer, arises from the gathering of like charges in the Stern layer. This layer is the distance needed for ionic charges to return to equilibrium. This distance, called the Debye length, λ, depends on the square root of the electrolyte concentration. To study the properties of …


The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser May 2018

The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser

Senior Theses

There are many golf balls on the market today with varying dimple sizes, shapes, and distribution. These proprietary differences are all designed to reduce drag on the balls during flight, allowing golfers to hit the ball farther distances. There are limited published studies comparing how varying the dimples affects the reduction of drag. An experiment was developed in which golf balls were pulled through a water tank to measure the drag force acting on each ball. The water was chosen to allow for testing at slower velocities than the typical necessary speeds to cause turbulence for balls traveling in air. …


Experimentally Investigating Water Aerosol Formation Via Alpha Radiation In A Humid Nitrogen Atmosphere, Megan Payne May 2018

Experimentally Investigating Water Aerosol Formation Via Alpha Radiation In A Humid Nitrogen Atmosphere, Megan Payne

Honors Theses

This project aims to verify the formation of water aerosols induced by an ionizing radiation source in a Nitrogen atmosphere with various levels of humidity. This work is part of an effort to characterize the overall signature of ionizing radiation in Earth’s typical atmosphere. By signature, it is meant all the chemical reactions and physical processes that take place between Earth’s atmosphere and the ionizing radiation. This signature can potentially be used to identify a radiation source out in the field. The identification of a radiation source could potentially be used in a variety of defense applications. To characterize this …


Understanding, Designing And Building A Hydroelectric Generator, Nicholas Weare Shenberger Jan 2018

Understanding, Designing And Building A Hydroelectric Generator, Nicholas Weare Shenberger

Senior Projects Spring 2018

When you hear the word hydropower you automatically jump to using water in order to create power or electricity. However, delving deeper and trying to understand the technology involved in it becomes quite a lot more complicated. To try to comprehend some of the knowledge of how to convert the power of water into electricity, I decided to design and build my own hydroelectric generator. I took the time to research and discover more about the process of building a generator and the specific pieces that come together in order to build one specifically powered by water. After my research, …


Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi Jul 2017

Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi

David Rosengrant

In order to help introductory physics students understand and learn to solve problems with circuits, we must first understand how they differ from experts. This preliminary study focuses on problem-solving dealing with electrical circuits. We investigate difficulties novices have with circuits and compare their work with those of experts. We incorporate the use of an eye-tracker to investigate any possible differences or similarities on how experts and novices solve electrical circuit problems. Our results show similarities in gaze patterns among all subjects on the components of the circuit. We further found that experts would look back at the circuit while …


Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck May 2017

Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck

Senior Theses

This paper explores the relationship between the operating temperature and electricity production of a simple heat engine. A Stirling engine was designed and constructed which runs on solar thermal energy collected by a Fresnel lens. The surface area of the solar collector was varied. This manipulated the operating temperature of the Stirling engine in order to measure power output. The mechanical energy from the engine was converted to electricity using a DC motor running in reverse, acting like a generator, in conjunction with an Arduino for data collection. Although adjustments must be made in order to improve the efficiency of …


Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr. May 2017

Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr.

Undergraduate Research

The concept for this research proposal is focused on achieving three main objectives:

1) To understand the logic and design behind the Raspberry Pi (RbP) mini-computer model, including: all hardware components and their functions, the capabilities [and limits] of the RbP, and the circuit engineering for these components.

2) To be able to, using the Python high-level language, duplicate, manipulate, and create RbP projects ranging from basic user-input and response systems to the theories behind more intricate and complicated observatory sensors.

3) Simultaneously, in order to combine a mutual shared interest of History and to blend in work done within …


Increasing Interest Of Young Women In Engineering, Diane Hinterlong, Branson Lawrence, Purva Devol Apr 2014

Increasing Interest Of Young Women In Engineering, Diane Hinterlong, Branson Lawrence, Purva Devol

Publications & Research

The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential college preparatory program. IMSA also serves thousands of educators and students in Illinois and beyond through innovative instructional programs that foster imagination and inquiry. IMSA also advances education through research, groundbreaking ventures and strategic partnerships.


The Physics Of A Space Elevator, Trevor Hamer Apr 2014

The Physics Of A Space Elevator, Trevor Hamer

Thinking Matters Symposium Archive

A space elevator is a hypothetical device consisting of a long cable attached to the surface of the earth that extends upward into space. Its purpose is to provide a tether on which a vehicle could be lifted up into orbit, greatly reducing the cost of space travel. This project explains the physical forces acting on the elevator along with the kinds of materials required to keep such a cable intact. It also examines different design aspects, as well as potential problems facing the construction and usage of the elevator, and whether or not it is something we should expect …


Narrow-Band Emission In Thomson Sources Operating In The High-Field Regime, Balša Terzić, Kirsten Deitrick, Alicia S. Hofler, Geoffrey A. Krafft Jan 2014

Narrow-Band Emission In Thomson Sources Operating In The High-Field Regime, Balša Terzić, Kirsten Deitrick, Alicia S. Hofler, Geoffrey A. Krafft

Physics Faculty Publications

We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the up-shifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications and reduces the spectral brilliance. We show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Furthermore, we suggest a practical realization of this compensation …


Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski Dec 2013

Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski

Doctoral Dissertations

The Spallation Neutron Source (SNS) located in the Oak Ridge National Laboratory is comprised of a 1 GeV linear H- [H^-] accelerator followed by an accumulator ring that delivers high intensity 1 μs [microsecond] long pulses of 1.5x1014 [1.5x10^14] protons to a liquid mercury target for neutron production by spallation reaction. With its strict 0.01% total beam loss condition, planned power upgrade, and proposed second target station, SNS ring beam-profile diagnostics capable of monitoring evolving beam conditions during high-power conditions are crucial for efficient operation and improvement. By subjecting ionized electrons created during beam interactions with the residual …


Breaking Glass: Exploring The Relationship Between Kinetic Energy And Radial Fracturing In Plate Glass, Andrea Hulman Apr 2012

Breaking Glass: Exploring The Relationship Between Kinetic Energy And Radial Fracturing In Plate Glass, Andrea Hulman

Scripps Senior Theses

When glass breaks from the impact of an object, it exhibits a distinctive shattering pattern comprised of two different regions. This pattern was investigated using experimental impacts and predicted using Young’s Modulus. Results were not as expected, and it is likely that there exists error in some measurements. Further investigation of this topic is recommended.


Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi Nov 2009

Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi

Faculty and Research Publications

In order to help introductory physics students understand and learn to solve problems with circuits, we must first understand how they differ from experts. This preliminary study focuses on problem-solving dealing with electrical circuits. We investigate difficulties novices have with circuits and compare their work with those of experts. We incorporate the use of an eye-tracker to investigate any possible differences or similarities on how experts and novices solve electrical circuit problems. Our results show similarities in gaze patterns among all subjects on the components of the circuit. We further found that experts would look back at the circuit while …