Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 268

Full-Text Articles in Elementary Particles and Fields and String Theory

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


Search For Exotic Higgs Boson Decay To Multiple B-Quarks With The Atlas Detector At Lhc Using Machine Learning Methods, Yuan-Tang Chou Nov 2023

Search For Exotic Higgs Boson Decay To Multiple B-Quarks With The Atlas Detector At Lhc Using Machine Learning Methods, Yuan-Tang Chou

Doctoral Dissertations

The discovery of the Higgs boson has opened up new possibilities for investigating physics beyond the Standard Model (SM). New particles may interact with the SM through the Higgs boson, and deviations from SM predictions can indicate the presence of new physics. This dissertation focuses on the search for exotic Higgs decay, $H\rightarrow aa \rightarrow (b\bbar)(b\bbar)$ where a is a new scalar boson and focuses on the case where the Higgs boson is produced in association with a Z boson. The data were collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy $\sqrt{s} =~13~\TeV$ from 2015 …


Tev-Scale Lepton Number Violation: 0Νββ Decay, The Origin Of Matter, And Energy Frontier Probes, Sebastian Urrutia Quiroga Nov 2023

Tev-Scale Lepton Number Violation: 0Νββ Decay, The Origin Of Matter, And Energy Frontier Probes, Sebastian Urrutia Quiroga

Doctoral Dissertations

Lepton number violation (LNV) offers promising theoretical pathways to several unresolved problems in particle and nuclear physics and unveils a diverse range of phenomenology across different energy scales. TeV-scale LNV is especially relevant for both its experimental accessibility and its broad-ranging impact, making it a key area of interest for both theoretical and experimental physicists. In this thesis, we explore three distinct scenarios within the LNV research landscape. Our first analysis concerns the implications of TeV-scale LNV effects in thermal leptogenesis and its complementary sensitivity in neutrinoless double beta (0νββ) decay and collider experiments. We employed a simplified model to …


Inverse Mappers For Qcd Global Analysis, Manal Almaeen Aug 2023

Inverse Mappers For Qcd Global Analysis, Manal Almaeen

Computer Science Theses & Dissertations

Inverse problems – using measured observations to determine unknown parameters – are well motivated but challenging in many scientific problems. Mapping parameters to observables is a well-posed problem with unique solutions, and therefore can be solved with differential equations or linear algebra solvers. However, the inverse problem requires backward mapping from observable to parameter space, which is often nonunique. Consequently, solving inverse problems is ill-posed and a far more challenging computational problem.

Our motivated application in this dissertation is the inverse problems in nuclear physics that characterize the internal structure of the hadrons. We first present a machine learning framework …


Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull Aug 2023

Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull

Mechanical & Aerospace Engineering Theses & Dissertations

The Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Laboratory (JLab) is a particle accelerator which can accelerate an electron beam to relativistic speeds and apply the beam onto target samples. The C100 superconducting radio frequency (SRF) cavity is the primary accelerating structure of the C100 cryomodule, one of the many cryomodules which compose the CEBAF linear accelerator. SRF cavities are particularly sensitive to internal and external vibrations that can result in a phenomenon called microphonics which degrade the operational stability of a cryomodule.

The purpose of this thesis is to investigate the significance of mechanical disturbances on …


Deep Virtual Pion Pair Production, Dilini Lakshani Bulumulla Aug 2023

Deep Virtual Pion Pair Production, Dilini Lakshani Bulumulla

Physics Theses & Dissertations

This experiment investigates the deep virtual production of both σ− and ρ− mesons, with a particular focus on the microscopic structure of the σ mesons. While the ρ meson is an ordinary qq¯ pair, the σ meson is composed of not only the typical qq¯ pair, making it a topic of controversy for nearly six decades. Although the existence of the σ− meson is now well established, its microscopic structure remains poorly understood. The primary objective of this thesis is to contribute to the understanding of the σ meson by analyzing its deep virtual production. The main focus of this …


Modified Geometries, Clifford Algebras And Graphs: Their Impact On Discreteness, Locality And Symmetr, Roma Sverdlov Jul 2023

Modified Geometries, Clifford Algebras And Graphs: Their Impact On Discreteness, Locality And Symmetr, Roma Sverdlov

Mathematics & Statistics ETDs

In this dissertation I will explore the question whether various entities commonly used in quantum field theory can be “constructed". In particular, can spacetime be “constructed" out of building blocks, and can Berezin integral be “constructed" in terms of Riemann integrals.

As far as “constructing" spacetime out of building blocks, it has been attempted by multiple scientific communities and various models were proposed. But the common downfall is they break the principles of relativity. I will explore the ways of doing so in such a way that principles of relativity are respected. One of my approaches is to replace points …


Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue Jun 2023

Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue

Dartmouth College Ph.D Dissertations

In this thesis I explore two main topics: the role and consequences of cosmological vector fields, and new ideas for constraining fundamental physics with state-of-the-art experiments. These topics are disparate in content and technique but unified in their attempt to leverage novel approaches to better understand longstanding questions in cosmology. These questions, such as ``What is causing the universe to accelerate today?'' and ``What are the neutrino masses?'', underpin the modern cosmological paradigm. They play a key role in our understanding of cosmic history, the formation of structure, and the fate of our universe. Answers to or hints about these …


A Study Of Data/Monte Carlo Agreement In Charmed Baryon Decays At Belle Ii, Kaitlyn Thurmond May 2023

A Study Of Data/Monte Carlo Agreement In Charmed Baryon Decays At Belle Ii, Kaitlyn Thurmond

Honors Theses

The Belle II experiment at the SuperKEKB electron-positron accelerator facility in Tsukuba, Japan has a primary goal of searching for new physics beyond the Standard Model of particle physics. Extremely precise measurements of particle decays will be compared with Standard Model predictions in order to expose the presence of new particles and interactions. These measurements are prepared using simulated samples to avoid potential biases when studying the data. The Belle II collaboration produces two types of simulated samples for this purpose. One is produced with consistent calibration payloads and another with payloads calibrated as a function of data taking. This …


An Analysis Of Detection Asymmetry Using Baryon Decays In Belle Ii, Matthew Mestayer May 2023

An Analysis Of Detection Asymmetry Using Baryon Decays In Belle Ii, Matthew Mestayer

Honors Theses

The purpose of this study was to determine the detection asymmetry of the Belle II detector using decays of two common baryons, Λ0 → ��π- and Σ+ → ��π0. A Monte Carlo simulation of both decays was used to determine the validity of signal isolation criteria. These criteria were then applied to the Belle II data, allowing for a comparison of the detection asymmetry in the data relative to the simulation. The results show a moderate detection asymmetry when using the Λ0 → ��π- decay, particularly for forward-going baryons. For the Σ+ …


Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini May 2023

Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini

Undergraduate Honors Theses

The Schwinger-Keldysh formalism for non-equilibrium field theory provides valuable tools for studying the black hole information loss paradox. In particular, there exists a Noether-like procedure to obtain the entropy density of a system by a discrete Kubo-Martin-Schwinger (KMS) variation of the action. Here, this Noether-like procedure is applied to the boundary action of an asymptotically anti-de Sitter (aAdS) black hole spacetime in maximally extended Kruskal coordinates. The result is the Kubo formula for shear viscosity, which is known in theories with an Einstein gravity dual to have a universal, constant ratio with the entropy density and is proportional to the …


Neutrino Physics At A Research Reactor: Backgrounds And Analysis, Blaine Alexander Heffron May 2023

Neutrino Physics At A Research Reactor: Backgrounds And Analysis, Blaine Alexander Heffron

Doctoral Dissertations

The field of neutrino physics has a rich history and is currently the subject of much active research. The discovery of neutrino oscillations led to the conclusion that neutrinos have mass which was in contradiction to the Standard Model. Now researchers are investigating a number of open questions regarding neutrino properties such as their mass values or the existence of CP violation in the weak interaction. In order to answer these questions experimental and analytical techniques of neutrino detection are becoming more advanced, entering into an era of precision neutrino detection.

Nuclear reactors as a source of antineutrinos have played …


Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen Apr 2023

Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen

Honors Theses

At Jefferson Lab we use the CLAS12 detector to measure the neutron magnetic form factor. An accurate measurement of the CLAS12 neutron detection efficiency (NDE) is required. We use the nuclear reaction ���� → ��′��+�� as a source of tagged neutrons and obtain the NDE from the ratio of expected neutrons to detected ones. We assume the final state consists of ��′��+�� only, use the ��′��+ information to predict the neutron's position(expected) and then search for that neutron(detected). We select neutrons with the missing mass (MM) technique. We use simulation to validate our methods. We simulated events with the Monte-Carlo …


New Physics In The Age Of Precision Cosmology, Vivian I. Sabla Apr 2023

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla

Dartmouth College Ph.D Dissertations

The Lambda-cold dark matter (LCDM) model has become the standard model of cosmology because of its ability to reproduce a vast array of cosmological observations, from the earliest moments of our Universe, to the current period of accelerated expansion, which it does with great accuracy. However, the success of this model only distracts from its inherent flaws and ambiguities. LCDM is purely phenomenological, providing no physical explanation for the nature of dark matter, responsible for the formation and evolution of large-scale structure, and giving an inconclusive explanation for dark energy, which drives the current period of accelerated expansion.

Furthermore, cracks …


New Aspects Of Scattering Amplitudes, Higher-K Amplitudes, And Holographic Quark Gluon Plasmas, Bruno Giménez Umbert Apr 2023

New Aspects Of Scattering Amplitudes, Higher-K Amplitudes, And Holographic Quark Gluon Plasmas, Bruno Giménez Umbert

Electronic Thesis and Dissertation Repository

We present new results on different aspects of quantum field theory, which are divided into three main parts. In part I, we find and prove a new behavior of massless tree-level scattering amplitudes, including the biadjoint scalar theory, the U(N) non-linear sigma model, and the special Galileon, within specific subspaces of the kinematic space. We also derive new formulas for the double-ordered biadjoint scalar and $\phi^p$ amplitudes, which can be obtained as integrals over the positive tropical Grassmannian and under limiting procedures on the kinematic invariants. This reveals surprising connections with cubic amplitudes. We also present alternative versions of the …


One-Loop Corrections To Dihadron Production In Dis At Small X, Filip Bergabo Feb 2023

One-Loop Corrections To Dihadron Production In Dis At Small X, Filip Bergabo

Dissertations, Theses, and Capstone Projects

We calculate the one-loop corrections to dihadron production in Deep Inelastic Scattering (DIS) at small x using the Color Glass Condensate formalism. We show that all UV and soft singularities cancel while the collinear divergences are absorbed into quark and anti quark-hadron fragmentation functions. Rapidity divergences lead to JIMWLK evolution of dipoles and quadrupoles describing multiple-scatterings of the quark anti-quark dipole on the target proton/nucleus. The resulting cross section is finite and can be used for phenomenological studies of dihadron angular correlations at small x in a future Electron-Ion Collider (EIC).


Beam-Based Target Alignment For Mu2e, Helenka Casler Feb 2023

Beam-Based Target Alignment For Mu2e, Helenka Casler

Dissertations, Theses, and Capstone Projects

The Mu2e Experiment is a precision experiment at Fermi National Accelerator Laboratory, searching for charged lepton flavor violation (CLFV) in the conversion of a muon to an electron in the presence of an atomic nucleus. In order to achieve the expected single-event sensitivity of 3 × 10-17 , Mu2e will require an intense muon beam, generated via pion decay. These pions are the product of a proton beam striking a radiatively-cooled tungsten target. In order to maximize pion production and prevent target failure, the beam will have to be aligned with the target center to within 0.5 mm. The …


Background Discrimination Of A Neutrino Detector With Dense Neural Networks, Perry Siehien Jan 2023

Background Discrimination Of A Neutrino Detector With Dense Neural Networks, Perry Siehien

Dissertations and Theses

Neutrinos are subatomic particles that weakly interact with matter due to their neutral charge and small cross section. Detectors that search for neutrinos require sensitive instrumentation, which makes them susceptible to various background sources such as gamma rays. Additionally, coherent elastic neutrino-nucleus scattering events, or CEvNS, are the weakest neutrino interactions at 1-25 keV, making them exceptionally difficult to observe. To understand the physics of CEvNS events within the detector material, the recoil signatures of relevant interactions must be determined. Traditional analysis methods are effective, but cannot be applied to energies below 50 keV, due to the overlap of discrimination …


Beam Dynamics Simulations And Systematic Studies For The Muon G-2 Experiment At Fermilab, Abel M. Lorente Campos Jan 2023

Beam Dynamics Simulations And Systematic Studies For The Muon G-2 Experiment At Fermilab, Abel M. Lorente Campos

Theses and Dissertations--Physics and Astronomy

The first results of the positive muon anomalous magnetic moment from the Muon g-2 Experiment at Fermilab differs from the Standard Model prediction by 3.3 standard deviations, with an experimental uncertainty of 0.46 ppm. Combining this result with the previous measurement from the Brookhaven National Laboratory, it sets the difference between experiment and theory at 4.2 standard deviations. The goal of the Muon g-2 Experiment at Fermilab is to increase this discrepancy to 5 standard deviations, which would require unprecedented precision in the measurements of 0.14 ppm. Of significant importance to achieving this precision, beam and spin dynamics simulations are …


Symbolic Computation Of Squared Amplitudes In High Energy Physics With Machine Learning, Abdulhakim Alnuqaydan Jan 2023

Symbolic Computation Of Squared Amplitudes In High Energy Physics With Machine Learning, Abdulhakim Alnuqaydan

Theses and Dissertations--Physics and Astronomy

The calculation of particle interaction squared amplitudes is a key step in the calculation of cross sections in high-energy physics. These complex calculations are currently performed using domain-specific symbolic algebra tools, where the computational time escalates rapidly with an increase in the number of loops and final state particles. This dissertation introduces an innovative approach: employing a transformer-based sequence-to-sequence model capable of accurately predicting squared amplitudes of Standard Model processes up to one-loop order when trained on symbolic sequence pairs. The primary objective of this work is to significantly reduce the computational time and, more importantly, develop a model that …


Simulations Of Electro-Optically Sampled Arbitrarily Shaped Electron Bunches For Wakefield Acceleratiors, Spencer Joseph Kelham Jan 2023

Simulations Of Electro-Optically Sampled Arbitrarily Shaped Electron Bunches For Wakefield Acceleratiors, Spencer Joseph Kelham

Graduate Research Theses & Dissertations

The measurement and recording of terahertz (THz) electric fields is of specialinterest to particle-accelerator science, as the electric fields of temporally short rela- tivistic electron bunches have frequency components that extend into the THz range. A single-shot, non-destructive measurement of such fields can be made using THz time-domain spectroscopy and electro-optic sampling. At the Argonne Wakefield Ac- celerator, arbitrary electron-bunch shapes are being explored to enhance the efficiency of advanced wakefield-accelerator schemes. In this report, we develop a framework for numerically modeling an implementation of electro-optical sampling – dubbed phase-diversity electro-optic sampling [1] – and apply the model to understand …


The Standard Model Precision Parameters At 200 Gev, Zamiul Alam Jan 2023

The Standard Model Precision Parameters At 200 Gev, Zamiul Alam

Graduate Research Theses & Dissertations

The Standard Model can be defined quantitatively by running parameters in a mass-independent renormalization scheme at a fixed reference scale. We provide a set of simple interpolation formulas that give the fundamental Lagrangian parameters in the MS-bar scheme at a renormalization scale of 200 GeV, safely above the top-quark mass and suitable for matching to candidate new physics models at very high mass scales using renormalization group equations. These interpolation formulas take as inputs the on-shell experimental quantities and use the best available calculations in the pure MS-bar scheme. They also serve as an accounting of the parametric uncertainties for …


Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu Jan 2023

Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu

Senior Projects Spring 2023

The quantum theory of gravity has eluded physicists for many decades. The apparent contradiction between the physics describing the microscopic and the macroscopic regimes has given rise to some beautiful theories and mathematics. In this paper, we discuss some aspects of one of those theories, namely loop quantum gravity (LQG). Specifically, we discuss the discreteness of spacetime, a feature that distinguishes LQG from some of the other contending theories. After a general discussion in the introduction, we discuss the dynamics and quantization of the simplices (tetrahedra) that make up the space. The discrete geometry of these tetrahedral grains of space …


Generation Of Phase Transitions Boundaries Via Convolutional Neural Networks, Christopher Alexis Ibarra Dec 2022

Generation Of Phase Transitions Boundaries Via Convolutional Neural Networks, Christopher Alexis Ibarra

Open Access Theses & Dissertations

Accurate mapping of phase transitions boundaries is crucial in accurately modeling the equation of state of materials. The phase transitions can be structural (solid-solid) driven by temperature or pressure or a phase change like melting which defines the solid-liquid melt line. There exist many computational methods for evaluating the phase diagram at a particular point in temperature (T) and pressure (P). Most of these methods involve evaluation of a single (P,T) point at a time. The present work partially automates the search for phase boundaries lines utilizing a machine learning method based on convolutional neural networks and an efficient search …


Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital Dec 2022

Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital

Physics Theses & Dissertations

Collider experiments demand small beam emittances in order to achieve high luminosity. For light particles such as electrons, there exists a natural synchrotron radiation damping resulting in low emittance beams at equilibrium. In the case of heavy particle beams such as proton or ion beams, there is no significant synchrotron radiation damping effect and some cooling mechanism is needed to get to low emittance beams. A dual energy storage ring cooler is a novel concept proposed to cool hadron beams at higher energies. The design consists of two rings: a low energy ring and a high energy ring connected by …


Quantum Field Theory In Nontrivial Backgrounds And Particle Production, Yue Qiu Oct 2022

Quantum Field Theory In Nontrivial Backgrounds And Particle Production, Yue Qiu

Doctoral Dissertations

Production of particles from nontrivial backgrounds is an important phenomenon in quantum field theory. In this thesis, we review some useful formulae of Bogoliubov formalism and explain how to derive the spectra of particle production. We then apply the formalism to study several scenarios. We first study the Schwinger effect in compact $(1+1)$ dimensions spacetime. Using the in-in formalism, we compute the correction to the electric field from the creation of charged particles both when the spatial dimension is compact and when it is non-compact. Secondly, we investigate the thermodynamic properties of the Schwarzschild-de Sitter (SdS) system. We explore particle …


Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano Sep 2022

Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano

Dissertations, Theses, and Capstone Projects

This dissertation consists of two parts, treating significantly separated fields. Each part consists on several chapters, each treating a somewhat isolated topic from the rest. In each chapter, I present some of the work developed during my passage through the graduate program, which has mostly been published elsewhere.

Part I – Cosmic Rays and Particle Physics

  • Chapter 1: In this chapter we present an introduction to the topic of cosmic ray physics, with an special focus on the so-called ultra high energy cosmic rays: their potential origins, effects during their propagation between their sources and Earth, the different techniques used …


The Separation Of Charm And Bottom Decays Measured In P+Au Collisions At 200 Gev, Zhiyan Wang Sep 2022

The Separation Of Charm And Bottom Decays Measured In P+Au Collisions At 200 Gev, Zhiyan Wang

Dissertations, Theses, and Capstone Projects

It has long been observed experimentally, from previous heavy-flavor electron measurements, that heavy quarks are subject to substantial modifications of their momentum spectrum. Using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC), measurements of the production of open heavy flavor hadrons with charm and bottom quarks in p+Au collisions at 200 GeV are studied and presented in this thesis. Distance of closest approach analysis of electron tracks is used to study the semileptonic decay electrons from charm and bottom hadrons. The results include invariant yield and fraction of bottom electrons. In addition to the p+p and Au+Au collisions’ …


Magnetic Field Effects On The Physics Of Neutron Stars, Aric A. Hackebill Sep 2022

Magnetic Field Effects On The Physics Of Neutron Stars, Aric A. Hackebill

Dissertations, Theses, and Capstone Projects

In the context of neutron stars (NS), dense-magnetized quark and hadron models have been well studied under the assumption that the system's pressures are isotropic. However, the pressures determined from semi-classical statistical averaging of the energy momentum tensor in the presence of a uniform background magnetic field are anisotropic with different pressures arising along and perpendicular to the magnetic field direction. Since large magnetic fields are expected to be present in the interior of NS, it is important to understand the roll the pressure anisotropy plays. While considering the pressure anisotropy, we revisit some important calculations in NS physics.

We …


Investigation Of Holographic Lattice Theories, Muhammad Asaduzzaman Aug 2022

Investigation Of Holographic Lattice Theories, Muhammad Asaduzzaman

Dissertations - ALL

The Anti-de Sitter/Conformal Field theory (AdS/CFT) correspondence, also known as holography, has been the focus of a great deal of interest and research for the last two decades. It has improved our understanding of general relativity and quantum field theories simultaneously through the interplay between these two different kinds of theories. However, there are still many aspects of holography that we do not understand or demand further analysis. Perturbative quantum field theory and perturbative metric expansion techniques are not equipped to investigate holography in some of the most interesting regimes such as the strongly interacting gravitational theory in anti-de Sitter …