Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 74

Full-Text Articles in Atomic, Molecular and Optical Physics

Questioning Reality: The Progressive Development Of Modern Physics, Joshua Lancman Jan 2024

Questioning Reality: The Progressive Development Of Modern Physics, Joshua Lancman

STEM for Success Showcase

Humanity has a tendency to divide time. The past is distinct from the present which is entirely separate from the future. In supposedly 20-20 vision history is neatly divided into different sections, distinct eras with sharp lines between them. What is present and in the future is always modern. What is past is something else with another name.

Yet time is not divided so neatly. We know this living through it: years and decades blend into one another in a non-uniform progression. To divide human history into separate eras is a necessary simplification, as it helps to ascribe order onto …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Study Of Radiation Effects In Gan-Based Devices, Han Gao Jul 2023

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen Apr 2023

Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen

Honors Theses

At Jefferson Lab we use the CLAS12 detector to measure the neutron magnetic form factor. An accurate measurement of the CLAS12 neutron detection efficiency (NDE) is required. We use the nuclear reaction ���� → ��′��+�� as a source of tagged neutrons and obtain the NDE from the ratio of expected neutrons to detected ones. We assume the final state consists of ��′��+�� only, use the ��′��+ information to predict the neutron's position(expected) and then search for that neutron(detected). We select neutrons with the missing mass (MM) technique. We use simulation to validate our methods. We simulated events with the Monte-Carlo …


Resonant Energy Exchange In Ultracold Rydberg Atoms, Samantha Grubb, Alan Okinaka Jul 2022

Resonant Energy Exchange In Ultracold Rydberg Atoms, Samantha Grubb, Alan Okinaka

Physics and Astronomy Summer Fellows

Ultracold Rydberg atoms serve as good systems in which resonant dipole-dipole interactions can be observed. The goal of our work is to design a simulation in which energy exchange among many nearly evenly spaced energy levels is observed. These observations are useful for understanding the time evolution of complicated quantum systems, and have applications in quantum computing and simulating. We are utilizing a supercomputer to run our simulation as well as studying the system experimentally. Once we obtain simulated results, we plan to compare them with the results obtained in a lab.


Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar Jun 2022

Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar

Physics

The rising interest in quantum computing has led to new quantum systems being developed and researched. Among these are trapped neutral atoms which have several desirable features and may be configured and operated on using lasers in an optical lattice. This work describes the development of a new data acquisition system for use in tuning lasers near the precise hyperfine transition frequencies of Rb 87 atoms, a crucial step in the functionality of a neutral atom trap. This improves on previous implementations that were deprecated and limited in laser frequency sweep range. Integration into the experiment was accomplished using an …


54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders Jul 2021

54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders

Physics and Astronomy Presentations

During our summer research at the John D Fox Laboratory, we used the 9 MV Tandem van de Graaff accelerator and the Super Enge Split-Pole Spectrograph to make measurements of the neutron transfer reaction 54Fe(d,p) 55Fe to observe and explore excited states of 55Fe and shell structure beyond the magic number N=28. We have created momentum spectra and angular distribution plots of the protons from the reaction which will be analyzed to determine the angular momentum values of states and single-neutron energies in 55Fe in an effort to better understand nuclear structure.


54fe(D,P)55fe Single Neutron Transfer, Matthew Quirin, Raymond Saunders Jul 2021

54fe(D,P)55fe Single Neutron Transfer, Matthew Quirin, Raymond Saunders

Physics and Astronomy Summer Fellows

During our summer research at the John D Fox Laboratory, we used the 9 MV Tandem van de Graaff accelerator and the Super Enge Split-Pole Spectrograph to make measurements of the neutron transfer reaction 54Fe(d,p) 55Fe to observe and explore excited states of 55Fe and shell structure beyond the magic number N=28. We have created momentum spectra and angular distribution plots of the protons from the reaction which will be analyzed to determine the angular momentum values of states and single-neutron energies in 55Fe in an effort to better understand nuclear structure.


Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner Mar 2021

Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner

Honors Theses

This thesis describes the experimental apparatus and procedure used to measure the excitation function of the 2p53p 3D3 state of neon. First I describe the effect on this excitation of negative ion resonances and previous experiments to measure the excitation function, as well as suggestions for future applications of such studies. Then the experimental apparatus is described in three parts. The vacuum system uses a turbomolecular pump to decrease the pressure of the chamber to as low as 4*10-9 Torr. The electron beam system incorporates a trochoidal electron monochromator to send a highly monochromatic beam …


Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer Mar 2021

Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer

Honors Theses

When an electron beam travels through space, it spreads out over time which impedes the ability to work with short electron pulses in the lab. A Wien filter is a device consisting of perpendicular electric and magnetic fields which filters charged particles based on their velocities. For a specific velocity, the two forces from the two fields in the filter cancel each other out letting charges with that velocity travel straight through the filter. Charges moving at other speeds are deflected as they have a net force applied to them from the filter. If a particle is deflected from the …


Characterization Of A Trochoidal Electron Monochromator, Jesse Kruse Mar 2020

Characterization Of A Trochoidal Electron Monochromator, Jesse Kruse

Honors Theses

This thesis presents a quantitative study of a trochoidal electron monochromator and attempts to observe the 2p^53p^2 resonance in neon. A detailed description of the experimental apparatus, including the electron beam system, the vacuum system, and the light analysis system, is presented first. Then, we discuss the theory of how the electron beam is monochromatized, how we measured monochomatization, and how we analyze the light being emitted from the collision cell. The light analysis system is capable of accurately measuring the relative Stokes parameters for any polarization of light, and the electron beam system is capable of producing electron beams …


Structuring Light For Investigating Optical Vortices, Andrew Voitiv, Mark Siemens Jan 2020

Structuring Light For Investigating Optical Vortices, Andrew Voitiv, Mark Siemens

DU Undergraduate Research Journal Archive

Vortices are well known in our world: tornadoes, hurricanes, and quickly stirred iced tea all demonstrate the vortex phenomenon. In addition to these classical fluids, vortices exist in laser light. While classical fluid vortex dynamics is one of the oldest studied physics problems, the study of optical vortices is only a few decades old. Paralleling the community’s curiosity of quantized vortices in quantum fluids, such as super fluid helium and Bose-Einstein condensate, there is immense interest in the study of optical vortices. In this article, we cover the basic theory of structuring light to generate optical vortices and then discuss …


A Brief Review Of Modern Uses Of Scattering Techniques, Daniel M. Wade, Dereth J. Drake Jun 2019

A Brief Review Of Modern Uses Of Scattering Techniques, Daniel M. Wade, Dereth J. Drake

Georgia Journal of Science

Thomson, Rayleigh, Mie, and Raman scattering are commonly used in several disciplines in science and engineering. The techniques involve the scattering of electromagnetic radiation or particles in a sample. This paper provides a brief history for each scattering method, describes the traditional laboratory approach for implementation, and discusses current uses and variations of these four techniques.


Computational Techniques For Scattering Amplitudes, Juliano A. Everett Dec 2018

Computational Techniques For Scattering Amplitudes, Juliano A. Everett

Publications and Research

Scattering amplitudes in quantum field theory can be described as the probability of a scattering process to happen within a high energy particle interaction, as well as a bridge between experimental measurements and the prediction of the theory.

In this research project, we explore the Standard Model of Particle Theory, it’s representation in terms of Feynman diagrams and the algebraic formulas associated with each combination.

Using the FeynArts program as a tool for generating Feynman diagrams, we evaluate the expressions of a set of physical processes, and explain why these techniques become necessary to achieve this goal.


The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik Jun 2018

The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik

The International Student Science Fair 2018

In nanophotonics, axisymmetric microlasers became widespread. As they have lots of advantages, they can be used in many scientific and industrial areas, such as microchips for data transfer in order to make electrical circuits smaller. But there is a drawback: they radiate in all directions in the plane of the substrate. This is why elements of directional output of radiation are being developed. A necessary part of such element is the diffraction grating applied to the surface of the waveguide. Such gratings are already being created, but with very expensive methods, for example, electronic lithography. We present a technique for …


The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik Jun 2018

The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik

The International Student Science Fair 2018

In nanophotonics, axisymmetric microlasers became widespread. As they have lots of advantages, they can be used in many scientific and industrial areas, such as microchips for data transfer in order to make electrical circuits smaller. But there is a drawback: they radiate in all directions in the plane of the substrate. This is why elements of directional output of radiation are being developed. A necessary part of such element is the diffraction grating applied to the surface of the waveguide. Such gratings are already being created, but with very expensive methods, for example, electronic lithography. We present a technique for …


Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere May 2017

Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere

Senior Theses

It is possible to produce electron beams with non-zero orbital angular momentum. Such beams, known as electron vortex beams, are theoretically able to transfer their orbital angular momenta to matter, causing the matter to rotate. Nanoparticles in an aqueous solution were observed with an electron vortex beam to detect the transfer of orbital angular momentum in a low-friction environment. Observing the transfer of orbital angular momentum to particles in solution is difficult due to the necessity of imaging the particles through a liquid and the random movement of particles in the solution. Thus, orbital angular momentum transfer to matter could …


Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul Apr 2017

Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul

Physics and Astronomy Honors Papers

We explore this two photon assisted transition through computational and numerical analysis of possible energy levels. We calculate the matrix elements of the energy transition in detail discussing constants and the quantum mechanical possibilities of energy exchanges in these systems.

The goal is to better understand the energy exchange, so that moving forward we can control it. This paper covers the theoretical ends to controlling the energy transition by the way of two photon assisted transitions. The energy transitions take place between a dipole-dipole interaction, and a microwave photon.


Using An Atomic Molecular Optics Laboratory For Undergraduate Research And Mentoring Of Physics Students In Georgia, Matthew P. Dallas Apr 2017

Using An Atomic Molecular Optics Laboratory For Undergraduate Research And Mentoring Of Physics Students In Georgia, Matthew P. Dallas

Georgia College Student Research Events

Using an Atomic Molecular Optics Laboratory for Undergraduate Research and Mentoring of Physics Students in Georgia

An Atomic and Molecular Optical (AMO) Physics research lab is an excellent tool to train and mentor undergraduate students in advanced laboratory techniques. Students gain valuable basic experience in experimental designs, data acquisition techniques, working with high precision optical equipment, building electronics, and working in the machine shop. The current project is building and testing an enclosure for the diode laser to reduce sound and vibrational interference. In addition, we are developing and evaluating a new, more compact laser cavity which is 3d printed. …


Ultracold Trimer Ion Formation Of Rb And K, Michael Cantara Apr 2016

Ultracold Trimer Ion Formation Of Rb And K, Michael Cantara

University Scholar Projects

The cooling of molecules into the ultracold regime allows for high resolution laser spectroscopy that reveals their complex rotational and vibrational structure. As the temperature is lowered towards absolute zero, the kinetic energy of the particles approaches zero, and therefore the Doppler shift approaches zero. With the Doppler shift negligibly small, spectral resolution is now primarily limited by the natural linewidth of the molecular peaks. Further, ultracold temperatures make possible the production of atoms or molecules that will reside in the lowest few states of the system. The high population in a few select states provides stronger and less congested …


Toward Analog Quantum Computing: Simulating Designer Atomic Systems, Jacob L. Bigelow, Veronica L. Sanford Jul 2015

Toward Analog Quantum Computing: Simulating Designer Atomic Systems, Jacob L. Bigelow, Veronica L. Sanford

Physics and Astronomy Summer Fellows

We use a magneto-optical trap to cool rubidium atoms to temperatures in the µK range. On the µs timescales of our experiment, the atoms are moving slowly enough that they appear stationary. We then excite them to a Rydberg state, where the outer electron is loosely bound. In these high energy states, the atoms can exchange energy with each other. Since the energy exchange depends on the separation and the relative orientation of the atoms, we can potentially control their interactions by controlling the spatial arrangements of the atoms. We model this system using simulations on a supercomputer …


Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi Jun 2015

Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi

Dissertations

The prime motivation of this work is to understand the fundamental transmission process of an electron beam through a funnel-shaped capillary taking into account its shape together with the energy, angular and time dependence of the transmitted electrons produce a microsized electron beam. The utilized capillaries had inlet/outlet diameters of 800/16 μm, 800/100 μm and lengths of 35 mm. Considerable transmission of 800 and 1000 eV electrons for tilt angles up to 1.5o and only small transmission for 500 eV electrons was observed for the capillary with the smaller outlet diameter of 16 μm. Incident electrons with energies of …


Measuring The Hyperfine Splittings Of Lowest Energy Atomic Transitions In Rubidium, Benjamin D. Graber Apr 2015

Measuring The Hyperfine Splittings Of Lowest Energy Atomic Transitions In Rubidium, Benjamin D. Graber

Undergraduate Honors Thesis Projects

The goal of this experiment was to measure the hyperfine energy splittings of the ground to first excited state transitions in rubidium using saturated absorption spectroscopy. Using this technique, we measured these transition energy spectra by taking the difference of two photodiode outputs due to multiple beams of a single laser scanned over a range of frequencies and shone through a cell of Rb vapor. When the laser frequency was resonant with an atomic transition, photons of those frequencies were absorbed, leaving a dip in intensity of the beam measured at the photodiode. One of the two laser beams had …


Dr. Hetrick's Last Lecture, James Hetrick Jan 2015

Dr. Hetrick's Last Lecture, James Hetrick

Last Lecture

After finishing his Bachelor's degree in Physics from Case Western Reserve University, Dr. Hetrick spent 13 months at the South Pole Station in Antarctica where he studied cosmic rays, the solar wind, the auroras, and the earth's magnetosphere.

He received his Ph.D. from the University of Minnesota in theoretical particle physics and went on to postdoctoral research positions at ETH in Zürich, the University of Amsterdam, the University of Arizona, and Washington University in St. Louis, before coming to the University of the Pacific in 1997.

At Pacific, Professor Hetrick teaches a variety of classes, including courses like "Cosmology" and …


Identification Of Hyperhalogens In Agn(Bo2)M (N = 1–3, M = 1–2) Clusters: Anion Photoelectron Spectroscopy And Density Functional Calculations, Xiang-Yu Kong, Hong-Guang Xu, Pratik Koirala, Wei-Jun Zheng, Anil K. Kandalam, Puru Jena Dec 2014

Identification Of Hyperhalogens In Agn(Bo2)M (N = 1–3, M = 1–2) Clusters: Anion Photoelectron Spectroscopy And Density Functional Calculations, Xiang-Yu Kong, Hong-Guang Xu, Pratik Koirala, Wei-Jun Zheng, Anil K. Kandalam, Puru Jena

Anil K. Kandalam

No abstract provided.


Electron Capture By Multiply Charged Ions From Molecular Targets, Justin Harris Apr 2014

Electron Capture By Multiply Charged Ions From Molecular Targets, Justin Harris

Masters Theses

State-selective differential cross sections for single-electron capture processes in collisions of Neq+ (q=2, 3, 5) ions with H2O and CO2 have been studied experimentally at laboratory collisions energies between 45 and 250 eV, and at scattering angles between 0o and 7:20o by means of translational energy-gain spectroscopy technique. The translational energy spectra show that only a few final states are populated depending on the projectile's charge state, laboratory scattering angle, and the collision energy. In addition, these measurements show that the dominant reaction channels are due to non-dissociative electron capture into excited states of …


Forcing Mutual Coherence In Diode Laser Stacks, Jonathan R. Wurtz Jan 2014

Forcing Mutual Coherence In Diode Laser Stacks, Jonathan R. Wurtz

Honors Theses and Capstones

This paper will discuss both theoretical and experimental attempts to improve the spatial beam quality of diode laser stacks using an external optical system. An overview and derivation of the mathematics of both the optical system and diode lasers will be discussed. The experimental setup will be presented, as well as the fundamental theoretical and experimental results that suggest the external optical system used for this thesis fails to improve the beam quality of a diode laser stack.


On The Origin Of Mode- And Bond-Selectivity In Vibrationally Mediated Reactions On Surfaces, Daniel Killelea, Arthur L. Utz Oct 2013

On The Origin Of Mode- And Bond-Selectivity In Vibrationally Mediated Reactions On Surfaces, Daniel Killelea, Arthur L. Utz

Chemistry: Faculty Publications and Other Works

The experimental observations of vibrational mode- and bond-selective chemistry at the gas–surface interface indicate that energy redistribution within the reaction complex is not statistical on the timescale of reaction. Such behavior is a key prerequisite for efforts to use selective vibrational excitation to control chemistry at the technologically important gas–surface interface. This paper outlines a framework for understanding the origin of non-statistical reactivity on surfaces. The model focuses on the kinetic competition between intramolecular vibrational energy redistribution (IVR) within the reaction complex, which in the long-time limit leads to statistical behavior, and quenching, scattering, or desorption processes that restrict the …


Computational Renormalization Scheme For Quantum Field Theories, Rainer Grobe, Qichang Su, R E. Wagner Jul 2013

Computational Renormalization Scheme For Quantum Field Theories, Rainer Grobe, Qichang Su, R E. Wagner

Faculty publications – Physics

We propose an alternative technique for numerically renormalizing quantum field theories based on their Hamiltonian formulation. This method is nonperturbative in nature and, therefore, exact to all orders. It does not require any correlation functions or Feynman diagrams. We illustrate this method for a model Yukawa-like theory describing the interaction of electrons and positrons with model photons in one spatial dimension. We show that, after mass renormalization of the fermionic and bosonic single-particle states, all other states in the Fock space have finite energies, which are independent of the momentum cutoff.


Enhancement Of Electron-Positron Pair Creation Due To Transient Excitation Of Field-Induced Bound States, M Jiang, Q Z. Lv, Z M. Sheng, Rainer Grobe, Qichang Su Apr 2013

Enhancement Of Electron-Positron Pair Creation Due To Transient Excitation Of Field-Induced Bound States, M Jiang, Q Z. Lv, Z M. Sheng, Rainer Grobe, Qichang Su

Faculty publications – Physics

We study the creation of electron-positron pairs induced by two spatially separated electric fields that vary periodically in time. The results are based on large-scale computer simulations of the time-dependent Dirac equation in reduced spatial dimensions. When the separation of the fields is very large, the pair creation is caused by multiphoton transitions and mainly determined by the frequency of the fields. However, for small spatial separations a coherence effect can be observed that can enhance or reduce the particle yield compared to the case of two infinitely separated fields. If the travel time for a created electron or positron …