Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Mexico

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 26 of 26

Full-Text Articles in Atomic, Molecular and Optical Physics

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper Aug 2023

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper

Optical Science and Engineering ETDs

Experimental observation of optical refrigeration using ytterbium doped silica glass in recent years has created a new solution for heat mitigation in high-power laser systems, nonlinear fiber experiments, integrated photonics, and precision metrology. Current efforts of different groups focus on compositional optimization, fiber fabrication, and investigating how much silica can be cooled with a laser. At the start of this work, the best effort in laser cooling ytterbium doped silica saw cooling by 6 K from room temperature. This dissertation follows the experimental efforts that culminated in the increase of this initial record by one order of magnitude. Comprehensive spectroscopic …


Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari May 2023

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari

Optical Science and Engineering ETDs

Laser filamentation is a fascinating phenomenon that occurs when an intense laser beam travels through transparent materials, in particular air. At sufficiently high power (TW in the near IR, GW in the UV), instead of spreading out like a regular laser beam, something remarkable happens: the laser beam becomes tightly focused, creating a thin and intense column of light called a laser filament. Laser filamentation is characterized by two main properties: (I) a high-intensity core that remains narrow over long distances beyond the Rayleigh range and (II) a low-density plasma channel within the core. In recent years, laser filamentation has …


Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani Apr 2023

Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani

Optical Science and Engineering ETDs

Intriguing photophysical properties of color centers in diamond make them ideal candidates for many applications from imaging and sensing to quantum networking. In the first part of this work, we have studied the silicon vacancy (SiV) centers in diamond for nanoscale imaging applications. We showed that these centers are promising fluorophores for Stimulated Emission Depletion (STED) microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. In the second part, we built a femtotesla Radio-Frequency (RF) magnetometer based on the diamond nitrogen vacancy (NV) centers and magnetic flux concentrators. We used this sensor to remotely detect Nuclear Quadrupole Resonance …


The Fluid Margin Between Physical Causal Closure And Non-Physical Causal Closure, Extended To The Neutrosophic Causal Closure Principle, Florentin Smarandache Jan 2023

The Fluid Margin Between Physical Causal Closure And Non-Physical Causal Closure, Extended To The Neutrosophic Causal Closure Principle, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

We plead for a fluid margin, or mixed/indeterminate buffer zone, between Physical and Non-Physical Causal Closures, and for a Neutrosophic Causal Closure Principle claiming that the chances of all physical effects are determined by their prior partially physical and partially non-physical causes.


Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell Jul 2022

Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell

Optical Science and Engineering ETDs

We describe a novel pulsed magnetic gradiometer based on the optical interference of sidebands generated using two spatially separated alkali vapor cells. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with Rubiduim 87 atoms in a coherent superposition of magnetically sensitive hyperfine ground states. First, experimental evidence of the sideband process is described for both steady-state and pulsed operation. Then, a theoretical framework is developed that accurately models sideband generation based on density matrix formalism. The gradiometer is then constructed using two spatially separated vapor cells, and a beat-note is generated. The …


Applications Of Machine Learning Algorithms In Materials Science And Bioinformatics, Mohammed Quazi Jun 2022

Applications Of Machine Learning Algorithms In Materials Science And Bioinformatics, Mohammed Quazi

Mathematics & Statistics ETDs

The piezoelectric response has been a measure of interest in density functional theory (DFT) for micro-electromechanical systems (MEMS) since the inception of MEMS technology. Piezoelectric-based MEMS devices find wide applications in automobiles, mobile phones, healthcare devices, and silicon chips for computers, to name a few. Piezoelectric properties of doped aluminum nitride (AlN) have been under investigation in materials science for piezoelectric thin films because of its wide range of device applicability. In this research using rigorous DFT calculations, high throughput ab-initio simulations for 23 AlN alloys are generated.

This research is the first to report strong enhancements of piezoelectric properties …


Nonequilibrium And Nonlinear Dynamics In Collective Spin Models And Implementations Using Quantum Feedback Control, Manuel H. Munoz Arias May 2022

Nonequilibrium And Nonlinear Dynamics In Collective Spin Models And Implementations Using Quantum Feedback Control, Manuel H. Munoz Arias

Physics & Astronomy ETDs

Out-of-equilibrium dynamics generalizes the study of ground states of quantum Hamiltonians at zero temperature, to that of dynamical quasi-steady states of quantum systems far from equilibrium. In this dissertation I discuss dynamical quantum phase transitions and out-of-equilibrium phases of matter in models of collective spins with multi-body interactions. These models, based on collective degrees of freedom, allow an exact description of the thermodynamic limit via the mean-field description. In this limit, the nonequilibrium dynamics of properties of quantum states is mapped to the nonlinear dynamics of classical variables, and thus it can be analyzed using tools from the theory of …


Design And Characterization Of Frequency Tripling Mirrors, Amir Khabbazi Oskouei Apr 2022

Design And Characterization Of Frequency Tripling Mirrors, Amir Khabbazi Oskouei

Optical Science and Engineering ETDs

Aperiodic stacks of dielectric low- and high-index films can be designed to enhance third-harmonic generation (THG) in reflection of near infrared laser pulses using computer optimization. Numerical and analytical results suggest that the TH energy increases rapidly with increasing number of films and the ratio of the high and low index.

Our optical matrix based THG model that takes into account the full pulse bandwidth predicts conversion efficiencies of about 7% for transform-limited Gaussian pulse bandwidths of 16 nm for mirrors with 45 layers, which exceed those expected from periodic designs. Stability against film thickness fluctuations expected from the deposition …


Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman Dec 2021

Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the inherent sensitivity of a laser's frequency to the parameters of its cavity. Intracavity interferometry is orders of magnitude more sensitive than its extracavity alternatives. This dissertation improves on previous free-space proof-of-concept designs. By implementing the technique in fiber optics, using optical parametric oscillation, and investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement techniques, IPI has become more applicable and sensitive. Ring and linear IPI configurations were realized in this work, both operating as bidirectional fiber optical parametric oscillators. The benefit of using externally pumped synchronous optical parametric oscillation is …


Non-Gaussian Measurements Of Coherent States Of Light For Metrology And Communication, Matthew Dimario May 2021

Non-Gaussian Measurements Of Coherent States Of Light For Metrology And Communication, Matthew Dimario

Physics & Astronomy ETDs

Conventional measurement technology is unable to extract the most amount of information possible from coherent states of light. Non-Gaussian measurements which can count individual photons can surpass the sensitivity limits of ideal conventional strategies, and approach the ultimate limits achievable given by quantum mechanics. This thesis presents investigations and demonstrations of these unconventional measurements, which utilize coherent operations and single photon counting. This thesis shows that non-Gaussian measurements can outperform conventional strategies in estimation tasks as well as a variety of communication problems. This thesis also investigates novel approaches and algorithms for building robustness to static and dynamic noise which …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani Jul 2020

Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers has evolved into a powerful technique for high-precision metrology. In this method a physical parameter to be measured imparts a phase shift onto a pulse circulating in the laser cavity. Inside a laser cavity, that phase shift becomes a frequency shift (phase shift/round-trip time) applied to the whole frequency comb created by this pulse as it exits the cavity at each round-trip. This frequency shift is measured by interfering this comb with a reference comb created by a reference pulse circulating in the same mode-locked …


Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr Jul 2020

Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr

Optical Science and Engineering ETDs

Over the past decades, high-power fiber lasers and amplifiers have been extensively under research to achieve higher output powers. However, temperature rise in the core of fiber lasers and amplifiers has been a big issue in power-scaling. Radiation-balancing is a viable technique introduced for effective heat mitigation in lasers and amplifiers by S. Bowman in 1995. Radiation-balancing relies on solid-state laser cooling as a self-cooling mechanism to mitigate the generated heat in lasers and amplifiers. To implement the mentioned idea in fiber lasers and amplifiers, a set of issues should be scrutinized; (i) the amenability of silica glass (as the …


Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert Apr 2020

Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half-maximum spot size of 89 ± 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache Jan 2020

A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a previous paper in this journal (IJNS), it is mentioned about a possible approach to re-describe QED without renormalization route. As it is known that in literature, there are some attempts to reconcile vortex-based fluid dynamics and particle dynamics. Some attempts are not quite as fruitful as others. As a follow up to previous paper, the present paper will discuss two theorems for developing unification theories, and then point out some new proposals including by Simula (2020) on how to derive Maxwell equations in superfluid dynamics setting; this could be a new alternative approach towards “fluidicle” or “vorticle” model …


Topics In Three-Dimensional Imaging, Source Localization And Super-Resolution, Zhixian Yu May 2019

Topics In Three-Dimensional Imaging, Source Localization And Super-Resolution, Zhixian Yu

Physics & Astronomy ETDs

The realization that twisted light beams with helical phasefronts could carry orbital angular momentum (OAM) that is in excess of the photon's spin angular momentum (SAM) has spawned various important applications. One example is the design of novel imaging systems that achieve three-dimensional (3D) imaging in a single snapshot via the rotation of point spread function (PSF).

Based on a scalar-field analysis, a particular simple version of rotating PSF imagery, which was proposed by my advisor Dr. Prasad, furnishes a practical approach to perform 3D source localization using a spiral phase mask that generates a combination of Bessel vortex beams. …


Compact Optical Frequency Standards For Future Applications Beyond The Laboratory, Kyle Martin Mar 2019

Compact Optical Frequency Standards For Future Applications Beyond The Laboratory, Kyle Martin

Physics & Astronomy ETDs

Atomic clocks provide one of the fundamental building blocks upon which modern telecommunications systems are constructed. Since the invention of the frequency comb in the early 2000s, laboratory frequency standards have quickly outpaced their compact counterparts. Compact clocks, however, have continued to leverage microwave transitions not yet exploring the advantages of an optical atomic clock. With the recent development of robust frequency combs compact optical clocks can now be realized. In this dissertation two atomic species are investigated for a compact atomic frequency standards. Both of these clocks are in different development stages but offer unique advantages. The optical rubidium …


Sampling Complexity Of Bosonic Random Walkers On A One-Dimensional Lattice, Gopikrishnan Muraleedharan, Akimasa Miyake, Ivan Deutsch Nov 2018

Sampling Complexity Of Bosonic Random Walkers On A One-Dimensional Lattice, Gopikrishnan Muraleedharan, Akimasa Miyake, Ivan Deutsch

Shared Knowledge Conference

Computers based quantum logic are believed to solve problems faster and more efficiently than computers based on classical boolean logic. However, a large-scale universal quantum computer with error correction may not be realized in near future. But we can ask the question: can we devise a specific problem that a quantum device can solve faster than current state of the art super computers? One such problem is the so called "Boson Sampling" problem introduced by Aaronson and Arkhipov. The problem is to generate random numbers according to same distribution as the output number configurations of photons in linear optics. It …


Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross Jul 2018

Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross

Physics & Astronomy ETDs

This dissertation concerns itself with the virtues and vices of weak measurements. Weak measurements are all around us, but this does not mean that one should manufacture weakness on all occasions. We critically evaluate two proposals that claim weak measurements provide a novel means of performing quantum state tomography, allegedly increasing tomographic efficacy and yielding foundational insights into the nature of quantum mechanics. We find weak measurements are not an essential ingredient for most of their advertised features. In contrast to this negative finding, we highlight an optimal tomographic scheme for which weak continuous measurements are the best known implementation, …


Dispersive Quantum Interface With Atoms And Nanophotonic Waveguides, Xiaodong Qi May 2018

Dispersive Quantum Interface With Atoms And Nanophotonic Waveguides, Xiaodong Qi

Physics & Astronomy ETDs

Strong coupling between atoms and light is critical for quantum information processing and precise sensing. A nanophotonic waveguide is a promising platform for realizing an atom-light interface that reaches the strong coupling regime. In this dissertation, we study the dispersive response theory of the nanowaveguide system as the means to create an entangling atom-light interface, with applications to quantum non-demolition (QND) measurement and spin squeezing.

We calculate the dyadic Green's function, which determines the scattering of light by atoms in the presence of a nanowaveguide, and thus the phase shift and polarization rotation induced on the guided light. The Green's …


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter Apr 2018

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due to electronic …


Studies Of Light Generation With Four-Wave Mixing In A Cold Atomic Ensemble, Andrew Ferdinand Feb 2018

Studies Of Light Generation With Four-Wave Mixing In A Cold Atomic Ensemble, Andrew Ferdinand

Physics & Astronomy ETDs

Correlated light generated from atomic ensembles can have a central role in prominent quantum information protocols, such as long-distance quantum communication. Here we present our studies on three topics involving the generation of correlated light with four-wave mixing (FWM) in a cold atomic ensemble for applications in quantum communications with high capacity. We experimentally investigate the generation of light with seeded FWM in cold cesium atoms and the time correlations of photon pairs generated with spontaneous FWM. We theoretically investigate the correlations in orbital angular momentum of photon pairs generated with spontaneous FWM for a range of experimental geometries. These …


Unmatter Entities Inside Nuclei, Predicted By The Brightsen Nucleon Cluster Model, Florentin Smarandache, Dmitri Rabounski Jan 2006

Unmatter Entities Inside Nuclei, Predicted By The Brightsen Nucleon Cluster Model, Florentin Smarandache, Dmitri Rabounski

Branch Mathematics and Statistics Faculty and Staff Publications

Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss how unmatter entities (the conjugations of matter and antimatter) may be formed as clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon clusters are present as a parton (sensu Feynman) superposition within the spatial confinement of the proton (1H1), the neutron, and the deuteron (1H2). If model predictions can be confirmed both mathematically and experimentally, a new physics is suggested. A proposed experiment is connected to othopositronium annihilation anomalies, which, being related to one of known unmatter entity, orthopositronium (built on electron and …


Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto Dec 2005

Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

This book was intended to discuss some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of ‘identity’, which too often it has been accepted as given. Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. While some aspects of theoretical foundations of logic are discussed, this book is not intended solely for pure mathematicians, but instead for physicists in the hope that some of ideas presented herein will be found useful. The book is motivated by …


An Experimental Determination Of The Distribution Of Core Location Of Extensive Air Showers, Jerre P. Moore May 1951

An Experimental Determination Of The Distribution Of Core Location Of Extensive Air Showers, Jerre P. Moore

Physics & Astronomy ETDs

It is the purpose of this paper to investigate the distribution of the core location of extensive air showers striking near an array of liquid scintillators.