Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 221

Full-Text Articles in Atomic, Molecular and Optical Physics

Ferroelectric Hafnia Surface In Action, Xia Hong Sep 2023

Ferroelectric Hafnia Surface In Action, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

Piezoresponse microscopy and spectroscopy reveal the inextricable role of surface electrochemistry in stabilizing and controlling ferroelectricity in doped hafnia.

Doped hafnia (HfO2), a relatively new member of the ferroelectric family, has challenged in many ways our conventional perception of ferroelectric oxides. It possesses extremely localized electric dipoles that are independently switchable,1 making it immune to finite size effects — the loss of long-range dipole order in ferroic materials due to size scaling. While polycrystalline grains and microstructures can yield lower polarization and poorer cycling behavior in canonical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3, in …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg May 2023

Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg

Alexei Gruverman Publications

Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of …


New Features In Landyne 5 - A Software Suite For Materials Characterization And Crystallography By Transmission Electron Microscopy, Xing-Zhong Li Jan 2023

New Features In Landyne 5 - A Software Suite For Materials Characterization And Crystallography By Transmission Electron Microscopy, Xing-Zhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

Landyne software suite (version 5) includes fifteen standalone computer programs for materials characterization and crystallography by transmission electron microscopy [1]. A launcher interface is provided for users to access all components conveniently. The purpose of this software suite is twofold: i) as research tools to analyze experimental results, ii) as teaching tools to explore the varieties of electron diffraction methods and crystallographic image processing principles.

The Landyne suite previously included: PTable, an interactive periodic table of elements; SVAT, a structural visual and analytical tool; SAED and PCED, simulation and analysis of electron diffraction (spot and ring) patterns; QSAED and QPCED, …


Structural, Electronic, And Magnetic Properties Of Cofevge-Based Compounds: Experiment And Theory, Parashu Kharel, Zachary Lehmann, Gavin Baker, Lukas Stuelke, Shah R. Valloppilly, Paul M. Shand, Pavel V. Lukashev Jan 2023

Structural, Electronic, And Magnetic Properties Of Cofevge-Based Compounds: Experiment And Theory, Parashu Kharel, Zachary Lehmann, Gavin Baker, Lukas Stuelke, Shah R. Valloppilly, Paul M. Shand, Pavel V. Lukashev

Nebraska Center for Materials and Nanoscience: Faculty Publications

We have carried out a combined theoretical and experimental investigation of both stoichiometric and nonstoichiometric CoFeVGe alloys. In particular, we have investigated CoFeVGe, Co1.25Fe0.75VGe, Co0.75Fe1.25VGe, and CoFe0.75VGe bulk alloys. Our first principles calculations suggest that all four alloys show ferromagnetic order, where CoFeVGe, Co1.25Fe0.75VGe, and Co0.75Fe1.25VGe are highly spin polarized with spin polarization values of over 80%. However, the spin polarization value of CoFe0.75VGe is only about 60%. We have synthesized all four samples using arc melting and high-vacuum annealing …


Tem Studies Of A New Modulated Structure In Mn2Rusn Alloy And Intermetallic Phases In Fe3+XCo3–XTi2 (X = 0, 1, 2, 3) Alloys, Xing-Zhong Li, Shah R. Valloppilly Jan 2023

Tem Studies Of A New Modulated Structure In Mn2Rusn Alloy And Intermetallic Phases In Fe3+XCo3–XTi2 (X = 0, 1, 2, 3) Alloys, Xing-Zhong Li, Shah R. Valloppilly

Nebraska Center for Materials and Nanoscience: Faculty Publications

Heusler compounds are a remarkable class of intermetallic materials with wide-ranging and tunable properties. The Mn2RuSn Heusler compound was reported as an L21B-type cubic phase, a = 0.62195 nm, distinguishing from the original L21 structure (or L21A-type). The L21B-type structure is a disordered variant of the inverse Heusler structure, XA-type (Prototype-CuHg2Ti, space group No. 216, F4–3m).

In our recent work [1], we observed a new modulated structure derived from the XA-type structure and its orthogonal domains in the Mn2RuSn Heusler alloy. The structural characterization was carried out …


Entropy-Driven Structural Transition From Tetragonal To Cubic Phase: High Thermoelectric Performance Of Cucdinse3 Compound, Tingting Luo, Yihao Hu, Shi Liu, Fanjie Xia, Junhao Qiu, Haoyang Peng, Keke Liu, Quansheng Guo, Xingzhong Li, Dongwang Yang, Xianli Su, Jinsong Wu, Xinfeng Tang Jan 2023

Entropy-Driven Structural Transition From Tetragonal To Cubic Phase: High Thermoelectric Performance Of Cucdinse3 Compound, Tingting Luo, Yihao Hu, Shi Liu, Fanjie Xia, Junhao Qiu, Haoyang Peng, Keke Liu, Quansheng Guo, Xingzhong Li, Dongwang Yang, Xianli Su, Jinsong Wu, Xinfeng Tang

Nebraska Center for Materials and Nanoscience: Faculty Publications

Cu based chalcopyrite is an important class of thermoelectric materials with excellent electronic properties, however, the thermal conductivity is relatively high due to the simple tetragonal structure with highly ordered configuration on cation sites, limiting the thermoelectric performance. Herein, we realize that the modulation of entropy via alloying CdSe achieves the structural transition from tetragonal structure with ordered configuration on cations sites in CuInSe2 compound to cubic CuCdInSe3. CuCdInSe3 crystallizes in a zinc blende (ZnS) structure where Cu, Cd and In cations randomly occupy the Zn site with the occupancy fraction 1/3. This entropy driven order-disorder …


Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan Jan 2023

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan

MSU Graduate Theses

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …


An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li Nov 2022

An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

Contrast transfer function (CTF) is a vital function in transmission electron microscopy (TEM). It expresses to what extent amplitudes converted from the phase changes of the diffracted waves contribute to the TEM image, including the effects of lens aberrations. Simulation is very helpful to understand the application of the function thoroughly. In this work, we develop the CTFscope as a component in the Landyne software suite, to calculate the CTF with temporal and spatial dumping envelopes for conventional TEM and to extend it to various aberrations (up to fifth order) for aberration-corrected (AC)- TEM. It also includes effects on the …


Remote Surface Optical Phonon Scattering In Ferroelectric Ba0.6Sr0.4Tio3 Gated Graphene, Hanying Chen, Tianlin Li, Yifei Hao, Anil Rajapitamahuni, Zhiyong Xiao, Stefan Schoeche, Mathias Schubert, Xia Hong Oct 2022

Remote Surface Optical Phonon Scattering In Ferroelectric Ba0.6Sr0.4Tio3 Gated Graphene, Hanying Chen, Tianlin Li, Yifei Hao, Anil Rajapitamahuni, Zhiyong Xiao, Stefan Schoeche, Mathias Schubert, Xia Hong

Xia Hong Publications

We report the effect of remote surface optical (RSO) phonon scattering on carrier mobility in monolayer graphene gated by ferroelectric oxide. We fabricate monolayer graphene transistors back-gated by epitaxial (001) Ba0.6Sr0.4TiO3 films, with field effect mobility up to 23,000 cm2 V−1 s−1 achieved. Switching ferroelectric polarization induces nonvolatile modulation of resistance and quantum Hall effect in graphene at low temperatures. Ellipsometry spectroscopy studies reveal four pairs of optical phonon modes in Ba0.6Sr0.4TiO3, from which we extract RSO phonon frequencies. The temperature dependence of resistivity in graphene can be well accounted for …


Quantum Dots In Two-Dimensional Tungsten Diselenide, Jeb Allen Michael Stacy Aug 2022

Quantum Dots In Two-Dimensional Tungsten Diselenide, Jeb Allen Michael Stacy

Graduate Theses and Dissertations

This work focuses on the investigation of single and double quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe_2) as a means to evaluate the valley degree of freedom as a potential qubit and ambipolar tungsten diselenide monolayers as single photon sources. Gate-defined quantum dots in monolayer and bilayer WSe_2 were fabricated and characterized. Single dot devices are gated from above and below the WSe_2 to accumulate a hole gas. Temperature dependence of Coulomb-blockade peak height is consistent with single-level transport. Excited-state transport in the quantum dot is shown for both monolayer and bilayer devices. Magnetic field dependence of …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg Jun 2022

Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg

Alexei Gruverman Publications

Recently, electrically conducting heterointerfaces between dissimilar band-insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport has been thoroughly explored and fundamental aspects of conduction firmly established. Perhaps surprisingly, similar insights into conceptually much simpler conducting homointerfaces, such as the domain walls that separate regions of different orientations of electrical polarisation within the same ferroelectric band-insulator, are not nearly so well-developed. Addressing this disparity, we herein report magnetoresistance in approximately conical 180° charged domain walls, which occur in partially switched ferroelectric thin film single crystal lithium niobate. This system is ideal for such measurements: firstly, …


External Beam Alignment System For Quantitative Proton Induced Gamma-Ray Emission (Pige) Spectroscopy, Elias Ottens Jun 2022

External Beam Alignment System For Quantitative Proton Induced Gamma-Ray Emission (Pige) Spectroscopy, Elias Ottens

Honors Theses

The effects of pollution on the ecosystem are paramount in our society, permeating air, soil, and drinking water. One contaminant of concern is per- and polyfluoroalkyl substances (PFAS), also referred to as "forever chemicals", which contains fluorine (F), a potentially harmful element to humans. To investigate pollution in the environment, it is necessary to make accurate measurements of the distribution and concentrations of these PFAS chemicals. To do this, soil samples are collected and analyzed using Particle Induced Gamma-ray Emission (PIGE) via the Union College Ion Beam Analysis Laboratory's (UCIBAL) particle accelerator. A 2.2 MeV proton beam comes into contact …


Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda May 2022

Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda

Graduate Theses and Dissertations

Since it was first isolated and characterized in 2004, graphene has shown the potential for a technological revolution. This is due to its amazing physical properties such as high electrical conductivity, high thermal conductivity, and extreme flexibility. Freestanding graphene membranes naturally possesses an intrinsic rippled structure, and these ripples are in constant random motion even room temperatures. Occasionally, the ripples undergo spontaneous buckling (change of curvature from concave to convex and vice versa) and the potential energy associated with this is a double well potential. This movement of graphene is a potential source of vibrational energy.

In this dissertation, we …


Annual Faculty Research Symposium 2022, Oakwood University Apr 2022

Annual Faculty Research Symposium 2022, Oakwood University

Proceedings

No abstract provided.


Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra, Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier Ii, Michael B. Shattan, Anil Patnaik Jan 2022

Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra, Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier Ii, Michael B. Shattan, Anil Patnaik

Faculty Publications

This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural network techniques are trained and tested on cerium-gallium pellet spectra. A thorough hyperparameter optimization experiment is conducted initially to determine the best design features for each model. The optimized models are evaluated for sensitivity and precision using the limit of detection (LoD) and root mean-squared error of prediction (RMSEP) metrics, respectively. Gaussian kernel regression yields the superlative predictive model with an RMSEP of …


A Modulated Structure Derived From The Xa-Type Mn2Rusn Heusler Compound, Xingzhong Li, Wen-Yong Zhang, Ralph Skomski, David J. Sellmyer Jan 2022

A Modulated Structure Derived From The Xa-Type Mn2Rusn Heusler Compound, Xingzhong Li, Wen-Yong Zhang, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

A modulated structure derived from the inverse Heusler phase (the XA-type and the disordered variant L21B-type) has been observed in rapidly quenched Mn2RuSn ribbons. The powder X-ray diffraction pattern of the quenched ribbons can be indexed as an L21B-type structure. Electron diffraction patterns of the new structure mostly resemble those of the XA-type (and the disordered variant L21B-type) structure and additional reflections with denser spacing indicate a long periodicity. Orthogonal domains of the modulated structure were revealed by a selected-area electron diffraction pattern and the corresponding dark-field transmission electron microscopy images. The structure was …


Localization Effects And Anomalous Hall Conductivity In A Disordered 3d Ferromagnet, Paul M. Shand, Y. Moua, G. Baker, Shah R. Valloppilly, Pavel V. Lukashev, Parashu Kharel Jan 2022

Localization Effects And Anomalous Hall Conductivity In A Disordered 3d Ferromagnet, Paul M. Shand, Y. Moua, G. Baker, Shah R. Valloppilly, Pavel V. Lukashev, Parashu Kharel

Nebraska Center for Materials and Nanoscience: Faculty Publications

We have prepared the Heusler alloy CoFeV0.5Mn0.5Si in bulk form via arc melting. CoFeV0.5Mn0.5Si is ferromagnetic with a Curie temperature of 657 K. The longitudinal resistivity exhibits a minimum at 150 K, which is attributable to competition between quantum interference corrections at low temperatures and inelastic scattering at higher temperatures. The magnetoresistance (MR) is positive and nearly linear at low temperatures and becomes negative at temperatures close to room temperature. The positive MR in the quantum correction regime is evidence of the presence of the enhanced electron interaction as a contributor to …


What Happens When Transition Metal Trichalcogenides Are Interfaced With Gold?, Archit Dhingra, Dmitri E. Nikonov, Alexey Lipatov, Alexander Sinitskii, Peter Dowben Jan 2022

What Happens When Transition Metal Trichalcogenides Are Interfaced With Gold?, Archit Dhingra, Dmitri E. Nikonov, Alexey Lipatov, Alexander Sinitskii, Peter Dowben

Peter Dowben Publications

Transition metal trichalcogenides (TMTs) are two-dimensional (2D) systems with quasi-one-dimensional (quasi-1D) chains. These 2D materials are less susceptible to undesirable edge defects, which enhances their promise for low-dimensional optical and electronic device applications. However, so far, the performance of 2D devices based on TMTs has been hampered by contact-related issues. Therefore, in this review, a diligent effort has been made to both elucidate and summarize the interfacial interactions between gold and various TMTs, namely, In4Se3, TiS3, ZrS3, HfS3, and HfSe3. X-ray photoemission spectroscopy data, supported by the results …


Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva Jan 2022

Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva

Dissertations, Master's Theses and Master's Reports

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments. The focus of this thesis is 2D materials especially graphene and BN studied using density functional theory (DFT) and molecular dynamics (MD) simulations. In the first half of the thesis, the electronic structure and optical properties are discussed for graphene, antimonene, and borophene. It is found that the absorbance in (atomically flat) multilayer antimonene (group …


Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman Dec 2021

Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the inherent sensitivity of a laser's frequency to the parameters of its cavity. Intracavity interferometry is orders of magnitude more sensitive than its extracavity alternatives. This dissertation improves on previous free-space proof-of-concept designs. By implementing the technique in fiber optics, using optical parametric oscillation, and investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement techniques, IPI has become more applicable and sensitive. Ring and linear IPI configurations were realized in this work, both operating as bidirectional fiber optical parametric oscillators. The benefit of using externally pumped synchronous optical parametric oscillation is …


Voltage Controlled Néel Vector Rotation In Zero Magnetic Field, Ather Mahmood, Will Echtenkamp, Mike Street, Jun Lei Wang, Shi Cao, Takashi Komesu, Peter Dowben, Pratyush Buragohain, Haidong Lu, Alexei Gruverman, Arun Parthasarathy, Shaloo Rakheja, Christian Binek Dec 2021

Voltage Controlled Néel Vector Rotation In Zero Magnetic Field, Ather Mahmood, Will Echtenkamp, Mike Street, Jun Lei Wang, Shi Cao, Takashi Komesu, Peter Dowben, Pratyush Buragohain, Haidong Lu, Alexei Gruverman, Arun Parthasarathy, Shaloo Rakheja, Christian Binek

Peter Dowben Publications

Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse …


Sigesn Light-Emitting Devices: From Optical To Electrical Injection, Yiyin Zhou Dec 2021

Sigesn Light-Emitting Devices: From Optical To Electrical Injection, Yiyin Zhou

Graduate Theses and Dissertations

Si photonics is a fast-developing technology that impacts many applications such as data centers, 5G, Lidar, and biological/chemical sensing. One of the merits of Si photonics is to integrate electronic and photonic components on a single chip to form a complex functional system that features compact, low-cost, high-performance, and reliability. Among all building blocks, the monolithic integration of lasers on Si encountered substantial challenges. Si and Ge, conventional epitaxial material on Si, are incompetent for light emission due to the indirect bandgap. The current solution compromises the hybrid integration of III-V lasers, which requires growing on separate smaller size substrates …


Magnetic Field Perturbations To A Soft X-Ray-Activated Fe (Ii) Molecular Spin State Transition, Guanhua Hao, Alpha T. N’Diaye, Thilini K. Ekanayaka, Ashley S. Dale, Xuanyuan Jiang, Esha Mishra, Corbyn Mellinger, Saeed Yazdani, John W. Freeland, Jian Zhang, Ruihua Cheng, Xiaoshan Xu, Peter Dowben Oct 2021

Magnetic Field Perturbations To A Soft X-Ray-Activated Fe (Ii) Molecular Spin State Transition, Guanhua Hao, Alpha T. N’Diaye, Thilini K. Ekanayaka, Ashley S. Dale, Xuanyuan Jiang, Esha Mishra, Corbyn Mellinger, Saeed Yazdani, John W. Freeland, Jian Zhang, Ruihua Cheng, Xiaoshan Xu, Peter Dowben

Peter Dowben Publications

The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2 }2 (bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find …


Corrigendum: Surface Termination And Schottky-Barrier Formation Of In4Se3(001) [Semiconductor Science And Technology (2020) 35 (065009) Doi: 10.1088/1361-6641/Ab7e45], Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben Jun 2021

Corrigendum: Surface Termination And Schottky-Barrier Formation Of In4Se3(001) [Semiconductor Science And Technology (2020) 35 (065009) Doi: 10.1088/1361-6641/Ab7e45], Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben

Peter Dowben Publications

Through the description of various surface terminations, the chain direction of In4Se3 in this paper [1] is implied to be in the plane of its surface. Even though the common convention for photoemission spectroscopy is to place z-axis along the surface normal, the axis perpendicular to the growth direction for this indium selenide is the crystallographic a-axis (and not the c-axis) [2–4]. Therefore, in our work the surface of In4Se3 should have been labeled (100), and not (001), to prevent any confusion that may have resulted from a less than conventional index notation. Data availability statement The data that support …


Colossal Intrinsic Exchange Bias From Interfacial Reconstruction In Epitaxial Cofe2 O4/Al2 O3 Thin Films, Detian Yang, Yu Yun, Arjun Subedi, Nicholas E. Rogers, David M. Cornelison, Peter Dowben, Xiaoshan Xu Jun 2021

Colossal Intrinsic Exchange Bias From Interfacial Reconstruction In Epitaxial Cofe2 O4/Al2 O3 Thin Films, Detian Yang, Yu Yun, Arjun Subedi, Nicholas E. Rogers, David M. Cornelison, Peter Dowben, Xiaoshan Xu

Peter Dowben Publications

We have studied the epitaxial CoFe2O4 (111) films grown on Al2O3 (0001) substrates of different thickness at various temperature and discovered colossal intrinsic exchange bias up to 7 ± 2 kOe. X-ray and electron diffraction clearly indicate an interfacial layer about 2 nm of different crystal structure from the “bulk” part of the CoFe2O4 film. The thickness dependence of the exchange bias suggests a hidden antiferromagnetic composition in the interfacial layer that couples to the ferrimagnetic “bulk” part of the CoFe2O4 film as the origin of the exchange …


Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu Jun 2021

Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu

Master's Theses

The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling …


Realization Of Bsu First Magneto-Optical Trap For The Spatial Confinement Of Rb Atoms Using Next Generation Fiber Optic Capabilities With Minimot, Brahmin Thurber-Carbone May 2021

Realization Of Bsu First Magneto-Optical Trap For The Spatial Confinement Of Rb Atoms Using Next Generation Fiber Optic Capabilities With Minimot, Brahmin Thurber-Carbone

Honors Program Theses and Projects

This paper will be a combination of my theoretical and experimental work toward Bridgewater State Universities first Magneto-Optical Trap (MOT) for laser cooling and trapping of neutral atoms in order to study fundamental quantum mechanical behavior of Rubidium (Rb) atoms. The goal of the theoretical aspect is to complete details of well-established works on how the complicated quantum, atomic, and electromagnetic (laser) interactions required to understand the design and operation of the MOT reduce to the physics and mathematics of a damped oscillator. This is made explicitly clear using familiar damped oscillator systems, such as a spring/mass/damping or pendulum/mass/damping (ie …


Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer May 2021

Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Heusler compounds and alloys based on them are of great recent interest because they exhibit a wide variety of spin structures, magnetic properties, and electron-transport phenomena. Their properties are tunable by alloying and we have investigated L21-ordered compound Ru2MnSn and its alloys by varying the atomic Mn:Sn composition. While antiferromagnetic ordering with a Néel temperature of 361 K was observed in Ru2MnSn, the Mn-poor Ru2Mn0.8Sn1.2 alloy exhibits properties of a diluted antiferromagnet in which there are localized regions of uncompensated Mn spins. Furthermore, a noncoplanar spin structure, evident from …