Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 30722

Full-Text Articles in Physics

Picosecond Time-Resolved Dynamics Of Energy Transfer Between Gan And The Various Excited States Of Eu3+ Ions, Ruoqiao Wei, Brandon Mitchell, Dolf Timmerman, Tom Gregorkiewicz, Wanxin Zhu, Jun Tatebayashi, Shuhei Ichikawa, Yasufumi Fujiwara, Volkmar Dierolf Aug 2019

Picosecond Time-Resolved Dynamics Of Energy Transfer Between Gan And The Various Excited States Of Eu3+ Ions, Ruoqiao Wei, Brandon Mitchell, Dolf Timmerman, Tom Gregorkiewicz, Wanxin Zhu, Jun Tatebayashi, Shuhei Ichikawa, Yasufumi Fujiwara, Volkmar Dierolf

Physics

To elucidate the energy transfer and reexcitation processes in Eu-doped GaN layers that are used in recently developed, highly efficient red light-emitting diodes, a systematic series of photoluminescence and time-resolved photoluminescence (TR-PL) measurements was performed. Critical insights on how “slow” Eu processes (∼µs) can compete against fast semiconductor processes (∼ps) are revealed using TR-PL with a high temporal resolution, as it is found that the initial energy transfer from GaN to the Eu3+ ions takes place rapidly, on a timescale of <100 ps. Below band-gap resonant excitation was used to identify the states into which the energy transfer occurs. For the most efficient Eu defect complexes, this transfer dominantly occurs directly into the 5 D0 state of Eu3+. Less efficient complexes also exhibit transfer into the 5 D2 state, the emission of which can be detected using photoluminescence at low temperature, indicating the importance of the excitation pathway on device efficiency. Under high excitation intensity, reexcitation can also occur, leading to a redistribution of population into the 5 D2, 5 D1, or 5 D0 states.


A Simple And Efficient Centrifugation Filtration Method For Bacterial Concentration And Isolation Prior To Testing Liquid Specimens With Laser-Induced Breakdown Spectroscopy, Dylan J. Malenfanta, Alexandra E. Paulick, Steven J. Rehse Aug 2019

A Simple And Efficient Centrifugation Filtration Method For Bacterial Concentration And Isolation Prior To Testing Liquid Specimens With Laser-Induced Breakdown Spectroscopy, Dylan J. Malenfanta, Alexandra E. Paulick, Steven J. Rehse

Physics Publications

An inexpensive filtration device was designed and constructed to rapidly concentrate bacteria in a liquid suspension on the surface of a disposable filter medium while at the same time separating the bacterial cells from larger contaminants in the suspension on the basis of their size. The device consists of a two-stage insert that is held rigidly in a standard tube during bacterial suspension centrifugation. The filters can be easily removed from the insert for subsequent testing with laser-induced breakdown spectroscopy in a process that takes only three minutes. Filter media of 0.45 micron pore size was found to capture ...


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Student Research Projects, Dissertations, and Theses - Chemistry Department

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get ...


Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges Aug 2019

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges

Civil Engineering Undergraduate Honors Theses

A ground-based aerial-tracking instrument, known as the Ground Tracker, designed to provide spectral data to quantify greenhouse gases is under development. The Ground Tracker includes an Optical System including a high power rifle scope, video camera, and spectrometer used to locate an active light source from the Emitter, and collect spectral data by utilizing an actuating mirror. The implementation of this instrument could be made low cost by utilizing existing weather balloon infrastructure to allow the Emitter to be placed into the lower stratosphere. The recovery of the emitter will be possible by tracking the GPS coordinates. Weather balloon instrument ...


Nonlinear Estimation And Control Methods For Mechanical And Aerospace Systems Under Actuator Uncertainty, Krishna Bhavithavya Kidambi Aug 2019

Nonlinear Estimation And Control Methods For Mechanical And Aerospace Systems Under Actuator Uncertainty, Krishna Bhavithavya Kidambi

Dissertations and Theses

Air flow velocity field control is of crucial importance in aerospace applications to prevent the potentially destabilizing effects of phenomena such as cavity ow oscillations, flow separation, flow-induced limit cycle oscillations (LCO) (flutter), vorticity, and acoustic instabilities. Flow control is also important in aircraft applications to reduce drag in aircraft wings for improved flight performance. Although passive flow control approaches are often utilized due to their simplicity, active flow control (AFC) methods can achieve improved flight performance over a wider range of time-varying operating conditions by automatically adjusting their level of control actuation in response to real-time sensor measurements. Although ...


Possible Schemes For A Single Photon Switch, Hemlin Swaran Rag Aug 2019

Possible Schemes For A Single Photon Switch, Hemlin Swaran Rag

Theses and Dissertations

I consider the effectiveness of a single control photon to route a target photon using two processes: the first one uses the transient excitation of a two-level system and the second one which uses the permanent population transfer in a three-level Λ-system to route the target photon. In the absence of a single control photon and when the system has additional decay channels, I find ways to optimize the success probability of routing with an increasing number of photons in the control field.


Impact Of Excitation-Inhibition Balance/Imbalance On Dynamics Of Cortical Neural Networks, Vidit Agrawal Aug 2019

Impact Of Excitation-Inhibition Balance/Imbalance On Dynamics Of Cortical Neural Networks, Vidit Agrawal

Theses and Dissertations

The purpose of this research is to study the implications of Excitation/Inhibition balance and imbalance on the dynamics of ongoing (spontaneous) neural activity in the cerebral cortex region of the brain.

The first research work addresses the question that why among the continuum of Excitation-Inhibition balance configurations, particular configuration should be favored? We calculate the entropy of neural network dynamics by studying an analytically tractable network of binary neurons. Our main result from this work is that the entropy maximizes at regime which is neither excitation-dominant nor inhibition-dominant but at the boundary of both. Along this boundary we see ...


If Space-Time Is Discrete, We May Be Able To Solve Np-Hard Problems In Polynomial Time, Ricardo Alvarez, Nick Sims, Christian Servin, Martine Ceberio, Vladik Kreinovich Aug 2019

If Space-Time Is Discrete, We May Be Able To Solve Np-Hard Problems In Polynomial Time, Ricardo Alvarez, Nick Sims, Christian Servin, Martine Ceberio, Vladik Kreinovich

Departmental Technical Reports (CS)

Traditional physics assumes that space and time are continuous. However, this reasonable model leads to some serious problems. One the approaches that physicists follow to solve these problems is to assume that the space-time is actually discrete. In this paper, we analyze possible computational consequences of this discreteness. It turns out that in a discrete space-time, we may be able to solve NP-hard problems in polynomial time.


Avoiding Einstein-Podolsky-Rosen (Epr) Paradox: Towards A More Physically Adequate Description Of A Quantum State, Joseph Bernal, Olga Kosheleva, Vladik Kreinovich Aug 2019

Avoiding Einstein-Podolsky-Rosen (Epr) Paradox: Towards A More Physically Adequate Description Of A Quantum State, Joseph Bernal, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

The famous EPR paradox shows that if we describe quantum particles in the usual way -- by their wave functions -- then we get the following seeming contradiction. If we entangle the states of the two particles, then move them far away from each other, and measure the state of the first particle, then the state of the second particle immediately changes -- which contradicts to special relativity, according to which such immediate-action-at-a-distance is not possible. It is known that, from the physical viewpoint, this is not a real paradox: if we measure any property of the second particle, the results will not ...


Classification Of Isometry Algebras Of Solutions Of Einstein's Field Equations, Eugene Hwang Aug 2019

Classification Of Isometry Algebras Of Solutions Of Einstein's Field Equations, Eugene Hwang

All Graduate Theses and Dissertations

Since Schwarzschild found the first solution of the Einstein’s equations, more than 800 solutions were found. Solutions of Einstein’s equations are classified according to their Lie algebras of isometries and their isotropy subalgebras. Solutions were taken from the USU electronic library of solutions of Einstein’s field equations and the classification used Maple code developed at USU. This classification adds to the data contained in the library of solutions and provides additional tools for addressing the equivalence problem for solutions to the Einstein field equations. In this thesis, homogeneous spacetimes, hypersurface-homogeneous spacetimes, Robinson-Trautman solutions, and some famous black ...


Benchmarks Of Nonclassicality For Qubit Arrays, Mordecai Waegell, Justin Dressel Aug 2019

Benchmarks Of Nonclassicality For Qubit Arrays, Mordecai Waegell, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

We present a set of practical benchmarks for N-qubit arrays that economically test the fidelity of achieving multi-qubit nonclassicality. The benchmarks are measurable correlators similar to two-qubit Bell correlators, and are derived from a particular set of geometric structures from the N-qubit Pauli group. These structures prove the Greenberger–Horne–Zeilinger (GHZ) theorem, while the derived correlators witness genuine N-partite entanglement and establish a tight lower bound on the fidelity of particular stabilizer state preparations. The correlators need only MN + 1 distinct measurement settings, as opposed to the 22N − 1 settings that would normally be required ...


Inverse Design Of Long-Range Intensity Correlation In Scattering Media, M. Koirala, R. Sarma, H. Cao, Alexey Yamilov Aug 2019

Inverse Design Of Long-Range Intensity Correlation In Scattering Media, M. Koirala, R. Sarma, H. Cao, Alexey Yamilov

Physics Faculty Research & Creative Works

We demonstrate a possibility of using geometry to deterministically control nonlocal correlation of waves undergoing mesoscopic transport through a disordered waveguide. In case of nondissipative medium, we find an explicit relationship between correlation and the shape of the system. Inverting this relationship, we realize inverse design: we obtain specific waveguide shape that leads to a predetermined nonlocal correlation. The proposed technique offers an approach to coherent control of wave propagation in random media that is complementary to wave-front shaping.


Introduction To Classical Field Theory, Charles G. Torre Aug 2019

Introduction To Classical Field Theory, Charles G. Torre

All Complete Monographs

This is an introduction to classical field theory. Topics treated include: Klein-Gordon field, electromagnetic field, scalar electrodynamics, Dirac field, Yang-Mills field, gravitational field, Noether theorems relating symmetries and conservation laws, spontaneous symmetry breaking, Lagrangian and Hamiltonian formalisms.


Modeling Proton Relative Biological Effectiveness Using Monte Carlo Simulations Of Microdosimetry, Mark A. Newpower Aug 2019

Modeling Proton Relative Biological Effectiveness Using Monte Carlo Simulations Of Microdosimetry, Mark A. Newpower

UT GSBS Dissertations and Theses (Open Access)

Proton therapy is a radiotherapy modality that can offer a better physical dose distribution when compared to photon radiotherapy by taking advantage of the Bragg peak, a narrow region of rapid energy loss. Proton therapy is also known to offer an enhanced relative biological effectiveness (RBE) compared to photons. In the current clinical standard, RBE is fixed at 1.1 at all points along the proton beam, meaning protons are assumed to require 10% less dose than photons to achieve target coverage and organ at risk (OAR) sparing. However, there is mounting clinical evidence, and a significant number of in ...


Commissioning Of Micro-Cube Thermoluminescent Dosimeters For Small Field Dosimetry Quality Assurance In Radiotherapy, Brandon Luckett Aug 2019

Commissioning Of Micro-Cube Thermoluminescent Dosimeters For Small Field Dosimetry Quality Assurance In Radiotherapy, Brandon Luckett

UT GSBS Dissertations and Theses (Open Access)

Small field dosimetry presents complications and uncertainties that could be circumvented by using detectors which are smaller than the radiation field. This study evaluates the reproducibility and accuracy of TLD micro-cubes for use in stereotactic radiosurgery (SRS) remote auditing quality assurance (QA) for treatment centers participating in clinical trials. This study tested the hypothesis that TLD micro-cubes could be commissioned to evaluate small field dosimetry, and provide reproducibility within 3%, as well as assure agreement between measured dose and calculated doses to within 5%.

The aims of this thesis were to characterize and commission TLD micro-cubes as well as to ...


Non-Fermi-Liquid Behaviors Associated With A Magnetic Quantum-Critical Point In Sr(Co{1-X}Ni{X})2as2 Single Crystals, Nediadath S. Sangeetha, Lin-Lin Wang, Andrei V. Smirnov, Volodymyr Smetana, A.-V. Mudring, Duane D. Johnson, Makariy A. Tanatar, Ruslan Prozorov, David C. Johnston Jul 2019

Non-Fermi-Liquid Behaviors Associated With A Magnetic Quantum-Critical Point In Sr(Co{1-X}Ni{X})2as2 Single Crystals, Nediadath S. Sangeetha, Lin-Lin Wang, Andrei V. Smirnov, Volodymyr Smetana, A.-V. Mudring, Duane D. Johnson, Makariy A. Tanatar, Ruslan Prozorov, David C. Johnston

Duane D. Johnson

Electron-doped Sr(Co{1-x}Ni{x})2As2 single crystals with compositions x = 0 to 0.9 were grown out of self-flux and SrNi2As2 single crystals out of Bi flux. The crystals were characterized using single-crystal x-ray diffraction (XRD), magnetic susceptibility chi(H,T), isothermal magnetization M(H,T), heat capacity Cp(H,T), and electrical resistivity ho(H,T) measurements versus applied magnetic field H and temperature T. The chi(T) data show that the crystals exhibit an antiferromagnetic (AFM) ground state almost immediately upon Ni doping on the Co site. Ab-initio electronic-structure calculations for x = 0 and x = 0 ...


Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage Jul 2019

Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage

Electronic Thesis and Dissertation Repository

Water vapor is the most dominant greenhouse gas in Earth's atmosphere. It is highly variable and its variations strongly depend on changes in temperature. Atmospheric water vapor can be expressed as relative humidity (RH), the ratio of the partial pressure of water vapor in the mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a given temperature. Liquid water can exist as super-cooled water for temperatures between 0C to -38C. Thus, RH can be measured either relative to water (RHw) or to ice (RHi). RHi measurements are important in the upper tropospheric ...


Hole Doping And Antiferromagnetic Correlations Above The Néel Temperature Of The Topological Semimetal (Sr1-X Kx) Mnsb2, Yong Liu, Farhan Islam, Kevin W. Dennis, Wei Tian, Benjamin G. Ueland, Robert J. Mcqueeney, David Vaknin Jul 2019

Hole Doping And Antiferromagnetic Correlations Above The Néel Temperature Of The Topological Semimetal (Sr1-X Kx) Mnsb2, Yong Liu, Farhan Islam, Kevin W. Dennis, Wei Tian, Benjamin G. Ueland, Robert J. Mcqueeney, David Vaknin

Ames Laboratory Accepted Manuscripts

Neutron diffraction and magnetic susceptibility studies of orthorhombic single crystal (Sr0.97K0.03)MnSb2 confirm the three-dimensional (3D) C-type antiferromagnetic (AFM) ordering of the Mn2+ moments at TN=305±3 K, which is slightly higher than that of the parent SrMnSb2 with TN=297±3 K. Susceptibility measurements of the K-doped and parent crystals above TN are characteristic of 2D AFM systems. This is consistent with high-temperature neutron diffraction of the parent compound that displays persisting 2D AFM correlations well above TN to at least ∼560 K with no evidence of a ferromagnetic phase. Analysis of the de Haas–van ...


Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz Jul 2019

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz

Chemistry and Biochemistry Faculty Publications

Cold collisions of light molecules are often dominated by a single partial wave resonance. For the rotational quenching of HD (v=1, j=2) by collisions with ground state para-H2, the process is dominated by a single L=2 partial wave resonance centered around 0.1 K. Here, we show that this resonance can be switched on or off simply by appropriate alignment of the HD rotational angular momentum relative to the initial velocity vector, thereby enabling complete control of the collision outcome.


Single Pair Of Weyl Fermions In The Half-Metallic Semimetal Eucd2as2, Lin-Lin Wang, Na Hyun Jo, Brinda Kuthanazhi, Yun Wu, Robert J. Mcqueeney, Adam Kaminski, Paul C. Canfield Jul 2019

Single Pair Of Weyl Fermions In The Half-Metallic Semimetal Eucd2as2, Lin-Lin Wang, Na Hyun Jo, Brinda Kuthanazhi, Yun Wu, Robert J. Mcqueeney, Adam Kaminski, Paul C. Canfield

Paul C. Canfield

Materials with the ideal case of a single pair of Weyl points (WPs) are highly desirable for elucidating the unique properties of Weyl fermions. EuC d 2 A s 2 is an antiferromagnetic topological insulator or Dirac semimetal depending on the different magnetic configurations. Using first-principles band-structure calculations, we show that inducing ferromagnetism in EuC d 2 A s 2 can generate a single pair of WPs from splitting the single pair of antiferromagnetic Dirac points due to its half-metallic nature. Analysis with a low-energy effective Hamiltonian shows that a single pair of WPs is obtained in EuC d 2 ...


Interplay Between Superconductivity And Itinerant Magnetism In Underdoped Ba1−Xkxfe2as2 (X = 0.2) Probed By The Response To Controlled Point-Like Disorder, Ruslan Prozorov, Marcin Kończykowski, Makariy A. Tanatar, Hai-Hu Wen, Rafael M. Fernandes, Paul C. Canfield Jul 2019

Interplay Between Superconductivity And Itinerant Magnetism In Underdoped Ba1−Xkxfe2as2 (X = 0.2) Probed By The Response To Controlled Point-Like Disorder, Ruslan Prozorov, Marcin Kończykowski, Makariy A. Tanatar, Hai-Hu Wen, Rafael M. Fernandes, Paul C. Canfield

Paul C. Canfield

The response of superconductors to controlled introduction of point-like disorder is an important tool to probe their microscopic electronic collective behavior. In the case of iron-based superconductors, magnetic fluctuations presumably play an important role in inducing high-temperature superconductivity. In some cases, these two seemingly incompatible orders coexist microscopically. Therefore, understanding how this unique coexistence state is affected by disorder can provide important information about the microscopic mechanisms involved. In one of the most studied pnictide family, hole-doped Ba1−xKxFe2As2 (BaK122), this coexistence occurs over a wide range of doping levels, 0.16 ≲ x ≲ 0.25. We used ...


Transverse Localization Of Transmission Eigenchannels, Hasan Yılmaz, Chia Wei Hsu, Alexey Yamilov, Hui Cao Jul 2019

Transverse Localization Of Transmission Eigenchannels, Hasan Yılmaz, Chia Wei Hsu, Alexey Yamilov, Hui Cao

Alexey Yamilov

Transmission eigenchannels are building blocks of coherent wave transport in diffusive media, and selective excitation of individual eigenchannels can lead to diverse transport behaviour. An essential yet poorly understood property is the transverse spatial profile of each eigenchannel, which is relevant for the associated energy density and critical for coupling light into and out of it. Here, we discover that the transmission eigenchannels of a disordered slab possess exponentially localized incident and outgoing profiles, even in the diffusive regime far from Anderson localization. Such transverse localization arises from a combination of reciprocity, local coupling of spatial modes and non-local correlations ...


Few-Body Dynamics Underlying Postcollision Effects In The Ionization Of H₂ By 75-Kev Proton Impact, M. Dhital, S. Bastola, A. Silvus, Don H. Madison, Michael Schulz Jul 2019

Few-Body Dynamics Underlying Postcollision Effects In The Ionization Of H₂ By 75-Kev Proton Impact, M. Dhital, S. Bastola, A. Silvus, Don H. Madison, Michael Schulz

Michael Schulz

We have measured fully differential cross sections (FDCS) for ionization in 75-keVp+H2 collisions for ejected electron speeds close to the projectile speed. The data were analyzed in dependence on both the electron emission angle and the projectile scattering angle. Pronounced postcollisional effects between the projectile and the ejected electrons were observed. Significant differences between experiment and theory and between two conceptually very similar theoretical models were found. This shows that in the region of electron-projectile velocity-matching the FDCS is very sensitive to the details of the underlying few-body dynamics.


The Role Of Multiple Electron Capture In The X-Ray Emission Process Following Charge Exchange Collisions With Neutral Targets, Sebastian Otranto, N. D. Cariatore, Ronald E. Olson Jul 2019

The Role Of Multiple Electron Capture In The X-Ray Emission Process Following Charge Exchange Collisions With Neutral Targets, Sebastian Otranto, N. D. Cariatore, Ronald E. Olson

Ronald E. Olson

In this work we theoretically study photonic spectra that follow charge exchange processes between highly charged ions and neutral argon and CO targets. The range of collision energies studied is 5 eV/amu-10 keV/amu, covering typical EBIT-traps and Solar Wind energies. Our studies are based on multiple electrons schemes within the classical trajectory Monte Carlo method. Electrons are sorted with the sequential binding energies for the target under consideration. The role played by the multiple electron capture process for the different collision systems under consideration is explicitly analyzed and its contribution separated as arising from double radiative decay and ...


Low Energy Electron And Positron Impact Differential Cross Sections For The Ionization Of Water Molecules In The Coplanar And Perpendicular Kinematics, P. Singh, G. Purohit, C. Champion, D. Sebilleau, Don H. Madison Jul 2019

Low Energy Electron And Positron Impact Differential Cross Sections For The Ionization Of Water Molecules In The Coplanar And Perpendicular Kinematics, P. Singh, G. Purohit, C. Champion, D. Sebilleau, Don H. Madison

Don H. Madison

We report here triply differential cross sections (TDCSs) for 81 eV electron and positron-impact ionization of the combined (1b1 + 3a1 ) orbitals of the water molecule by using the second-order distorted wave Born approximation (DWBA2) for ejection electron and positron energies of 5 eV and 10 eV and different momentum transfer conditions. The electron-impact TDCS will be compared with the experimental data measured by Ren et al. [Phys. Rev. A 95, 022701 (2017)] and with the molecular 3-body distorted wave (M3DW) approximation results in the scattering plane as well as the perpendicular plane. The DWBA2 results are in better ...


Triple Differential Cross Sections For Electron-Impact Ionization Of Methane At Intermediate Energy, Esam Ali, Carlos Granados, Ahmad Sakaamini, Don H. Madison Jul 2019

Triple Differential Cross Sections For Electron-Impact Ionization Of Methane At Intermediate Energy, Esam Ali, Carlos Granados, Ahmad Sakaamini, Don H. Madison

Don H. Madison

We report an experimental and theoretical investigation of electron-impact single ionization of the highest occupied molecular orbital 1t2 and the next highest occupied molecular orbital 2a1 states of CH4 at an incident electron energy of 250 eV. Triple differential cross sections measured in two different laboratories were compared with results calculated within the molecular 3-body distorted wave and generalized Sturmian function theoretical models. For ionization of the 1t2 state, the binary peak was observed to have a single maximum near the momentum transfer direction that evolved into a double peak for increasing projectile scattering angles, as ...


Few-Body Dynamics Underlying Postcollision Effects In The Ionization Of H₂ By 75-Kev Proton Impact, M. Dhital, S. Bastola, A. Silvus, Don H. Madison, Michael Schulz Jul 2019

Few-Body Dynamics Underlying Postcollision Effects In The Ionization Of H₂ By 75-Kev Proton Impact, M. Dhital, S. Bastola, A. Silvus, Don H. Madison, Michael Schulz

Don H. Madison

We have measured fully differential cross sections (FDCS) for ionization in 75-keVp+H2 collisions for ejected electron speeds close to the projectile speed. The data were analyzed in dependence on both the electron emission angle and the projectile scattering angle. Pronounced postcollisional effects between the projectile and the ejected electrons were observed. Significant differences between experiment and theory and between two conceptually very similar theoretical models were found. This shows that in the region of electron-projectile velocity-matching the FDCS is very sensitive to the details of the underlying few-body dynamics.


Modelling And Evaluation Of Electrical Resonance Eddy Current For Submillimeter Defect Detection, Yew San Hor, Vinod K. Sivaraja, Yu Zhong, Bui V. Phuong, Christopher Lane Jul 2019

Modelling And Evaluation Of Electrical Resonance Eddy Current For Submillimeter Defect Detection, Yew San Hor, Vinod K. Sivaraja, Yu Zhong, Bui V. Phuong, Christopher Lane

Yew San Hor

Eddy current (EC) inspection is used extensively in non-destructive testing (NDT) to detect surface-breaking defects of engineering components. However, the sensitivity of conventional eddy current inspection has plateaued in recent years. The ability to detect submillimetre defects before it becomes critical would allow engineering components to remain in-service safely for longer. Typically, it is required that higher frequency EC is employed to achieve a suitable sensitivity for detection of such submillimetre defects. However, that would lead to significant electromagnetic noise affecting the sensitivity of the inspection. To overcome this issue, the electrical-resonance based eddy current method has been proposed, where ...


Temperature-Dependent Anisotropies Of Upper Critical Field And London Penetration Depth, V. G. Kogan, Ruslan Prozorov, A. E. Koshelev Jul 2019

Temperature-Dependent Anisotropies Of Upper Critical Field And London Penetration Depth, V. G. Kogan, Ruslan Prozorov, A. E. Koshelev

Ames Laboratory Accepted Manuscripts

We show on a few examples of one-band materials with spheroidal Fermi surfaces and anisotropic order parameters that anisotropies γH of the upper critical field and γλ of the London penetration depth depend on temperature, a feature commonly attributed to multiband superconductors. The parameters γH and γλ may have opposite temperature dependences or may change in the same direction depending on the Fermi-surface shape and on the character of the gap nodes. For two-band systems, the behavior of anisotropies is affected by the ratios of bands densities of states, Fermi velocities, anisotropies, and order parameters. We investigate in detail the ...


The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang Jul 2019

The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang

Physics & Astronomy Faculty Publications

The first gravitational wave (GW) — gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) — short GRB (sGRB) associations and GW burst — long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding medium ...