Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physics

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne May 2023

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne

Physics Theses & Dissertations

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently high purity niobium is the material of choice for SRF cavities which have been optimized to operate near their theoretical field limits. This brings about the need for significant R&D efforts to develop next generation superconducting materials which could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under high RF magnetic field without penetration of quantized …


Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen Jan 2022

Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen

Physics Faculty Publications

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without …


The Magnetic Field Penetration Measurement Of Thin Film And Multilayered Superconductors For Srf Cavities, Iresha Harshani Senevirathne, Jean Delayen Apr 2021

The Magnetic Field Penetration Measurement Of Thin Film And Multilayered Superconductors For Srf Cavities, Iresha Harshani Senevirathne, Jean Delayen

College of Sciences Posters

Radio Frequency (RF) Cavities are used in particle accelerators and they are typically formed from or coated with superconducting materials. High purity niobium is the material of choice for SRF cavities and niobium cavities operate at their theoretical field limits. SRF researchers have begun a significant R&D effort to develop alternative materials to continue to keep up with the demands of new accelerator facilities. To achieve high performance with high accelerating gradient, cavity material should have an ability to persist in superconducting state under high magnetic field without magnetic flux penetration through the cavity wall. Therefore, the magnetic field at …


Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac May 2018

Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which …


Numerical Simulation For A Rising Bubble Interacting With A Solid Wall: Impact, Bounce, And Thin Film Dynamics, Changjuan Zhang, Jie Li, Li-Shi Luo, Tiezheng Qian Jan 2018

Numerical Simulation For A Rising Bubble Interacting With A Solid Wall: Impact, Bounce, And Thin Film Dynamics, Changjuan Zhang, Jie Li, Li-Shi Luo, Tiezheng Qian

Mathematics & Statistics Faculty Publications

Using an arbitrary Lagrangian-Eulerian method on an adaptive moving unstructured mesh, we carry out numerical simulations for a rising bubble interacting with a solid wall. Driven by the buoyancy force, the axisymmetric bubble rises in a viscous liquid toward a horizontal wall, with impact on and possible bounce from the wall. First, our simulation is quantitatively validated through a detailed comparison between numerical results and experimental data. We then investigate the bubble dynamics which exhibits four different behaviors depending on the competition among the inertial, viscous, gravitational, and capillary forces. A phase diagram for bubble dynamics has been produced using …


Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza Aug 2017

Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza

Electrical & Computer Engineering Faculty Publications

Hydrogenated silicon (Si:H) thin films have been prepared by radio frequency (RF) magnetron sputtering. The effect of hydrogen gas concentration during sputtering on the resultant film structural and optical properties has been investigated by real time spectroscopic ellipsometry (RTSE) and grazing incidence x-ray diffraction (GIXRD). The analysis of in-situ RTSE data collected during sputter deposition tracks the evolution of surface roughness and film bulk layer thickness with time. Growth evolution diagrams depicting amorphous, nanocrystalline and mixed-phase regions for low and high deposition rate Si:H are constructed and the effects of process parameter (hydrogen gas concentration, total pressure and RF power) …


Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali Jan 2015

Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali

Applied Research Center Publications

Cu (In,Ga,Al)Se2 (CIGAS) thin films were studied as an alternative absorber layer material to Cu(InxGa1-x)Se2. CIGAS thin films with varying Al content were prepared by magnetron sputtering on Si(100) and soda-lime glass substrates at 350 °C, followed by postdeposition annealing at 520 °C for 5 h in vacuum. The film composition was measured by an electron probe microanalyzer while the elemental depth profiles were determined by secondary ion mass spectrometry. X-ray diffraction studies indicated that CIGAS films are single phase with chalcopyrite structure and that the (112) peak clearly shifts to higher 2θ …


Maximum Screening Fields Of Superconducting Multilayer Structures, Alex Gurevich Jan 2015

Maximum Screening Fields Of Superconducting Multilayer Structures, Alex Gurevich

Physics Faculty Publications

It is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields Hsof both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness ~0.1μm at the Nb surface could increase Hs similar or equal to 240 mT of a clean Nb up to Hs similar or equal to 290 mT. Optimized multilayers of Nb3Sn, NbN, some of the iron pnictides, or alloyed …


Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li Jan 2014

Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li

Electrical & Computer Engineering Faculty Publications

Metal-Oxide-Semiconductor (MOS) capacitors with Bi2Te3 thin film sandwiched and embedded inside the oxide layer have been fabricated and studied. The capacitors exhibit ferroelectric-like hysteresis which is a result of the robust, reversible polarization of the Bi2Te3 thin film while the gate voltage sweeps. The temperature-dependent capacitance measurement indicates that the activation energy is about 0.33 eV for separating the electron and hole pairs in the bulk of Bi2Te3, and driving them to either the top or bottom surface of the thin film. Because of the fast polarization speed, potentially excellent …


Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart Jan 2014

Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

Among the many vanadium suboxides and different stoichiometries, VO2 has received considerable attention due to its remarkable metal-insulator transition (MIT) behavior, which causes a significant reversible change in its electrical and optical properties occurring across the phase transition at 67°C. The initially amorphous VO2 thin films were fabricated by the emerging, Atomic Layer Deposition (ALD) technique with (tetrakis[ethylmethylamino]vanadium) {V(NEtMe)4} as precursor and H2O vapor as oxidation agent. For benchmarking we have also used the RF Magnetron Sputtering technique to deposit metallic vanadium thin films, which were later oxidized during furnace annealing. Post annealing of …


Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha Jan 2013

Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha

Electrical & Computer Engineering Theses & Dissertations

Niobium nitride films (NbNx) were grown on Nb and Si (100) substrates using pulsed laser deposition (PLD), laser heating, and thermal diffusion methods. Niobium nitride films were deposited on Nb substrates using PLD with a Q-switched Nd: YAG laser (λ = 1064 nm, 40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, different nitrogen background pressures and deposition temperatures. The effect of changing PLD parameters for films done by PLD was studied. The seen observations establish guidelines for adjusting the laser parameters to achieve the desired morphology and phase of the grown NbNx films.

When the …


Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac Jan 2012

Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

In situ and ex situ characterization methods have been applied to investigate the properties of (Ag,Cu)InSe2 (ACIS) thin films. Data acquired from real time spectroscopic ellipsometry (RTSE) experiments were analyzed to extract the evolution of the nucleating, bulk, and surface roughness layer thicknesses. The evolution of these layer thicknesses suggests a transition from Volmer-Weber to Stranski-Krastanov type behavior when Cu is replaced by Ag. The complex dielectric functions of ACIS at both deposition and room temperature as a function of film composition were also extracted from the RTSE data, enabling parameterization of the alloy optical properties.


Section Abstracts: Astronomy, Mathematics And Physics With Materials Science Apr 2011

Section Abstracts: Astronomy, Mathematics And Physics With Materials Science

Virginia Journal of Science

Abstracts for the Astronomy, Mathematics, and Physics with Materials Science Section for the 89th Annual Meeting of the Virginia Academy of Science, May 25-27, 2011, University of Richmond, Richmond VA.


Electronic And Structural Properties Of Molybdenum Thin Films As Determined By Real Time Spectroscopic Ellipsometry, J. D. Walker, H. Khatri, V. Ranjan, Jian Li, R. W. Collins, S. Marsillac Jan 2009

Electronic And Structural Properties Of Molybdenum Thin Films As Determined By Real Time Spectroscopic Ellipsometry, J. D. Walker, H. Khatri, V. Ranjan, Jian Li, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Walker, J.D., Khatri, H., Ranjan, V., Li, J., Collins, R.W., & Marsillac, S. (2009). Electronic and structural properties of molybdenum thin films as determined by real-time spectroscopic ellipsometry. Applied Physics Letters, 94(14). doi: 10.1063/1.3117222


Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2005

Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled Ge quantum dots are grown on Si(100)- 2×1 by pulsed laser deposition. The growth is studied by in situ reflection high-energy electron diffraction and postdeposition atomic force microscopy. After the completion of the wetting layer, transient hut clusters, faceted by different planes, are observed. When the height of these clusters exceeded a certain value, the facets developed into {305} planes. Some of these huts become {305}-faceted pyramids as the film mean thickness was increased. With further thickness increase, dome clusters developed on the expense of these pyramids. © 2005 American Institute of Physics. [DOI: 10.1063/1.1949285]


Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac Jan 2003

Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac

Electrical & Computer Engineering Faculty Publications

γ-In[sub 2]Se[sub 3] thin film are deposited for various substrate temperatures in the range of 523–673 K. This study shows that at 573 and 673 K the thin films are well crystallized with grains aligned along the c axis. Between these temperatures, a domain of instability appears where the γ-In[sub 2]Se[sub 3] thin films have a randomly orientation and the c-lattice parameter increases. The presence of the metastable phase κ-In[sub 2]Se[sub 3], during the growth, can explain the existence of this domain of instability. The insertion of Zn during the preparation process allows us to stabilize the phase κ at …


Cuin1-Xalxse2 Thin Films And Solar Cells, P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarman Jun 2002

Cuin1-Xalxse2 Thin Films And Solar Cells, P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

CuIn[sub 1-x]Al[sub x]Se[sub 2] thin films are investigated for their application as the absorber layer material for high efficiency solar cells. Single-phase CuIn[sub 1-x]Al[sub x]Se[sub 2] films were deposited by four source elemental evaporation with a composition range of 0≤x≤0.6. All these films demonstrate a normalized subband gap transmission >85% with 2 µm film thickness. Band gaps obtained from spectroscopic ellipsometry show an increase with the Al content in the CuIn[sub 1-x]Al[sub x]Se[sub 2] film with a bowing parameter of 0.62. The structural properties investigated using x-ray diffraction measurements show a decrease in lattice spacing as the Al content increases. …


Reflection High-Energy Electron-Diffraction Study Of Melting And Solidification Of Pb On Graphite, Z. H. Zhang, P. Kulatunga, H. E. Elsayed-Ali Jan 1997

Reflection High-Energy Electron-Diffraction Study Of Melting And Solidification Of Pb On Graphite, Z. H. Zhang, P. Kulatunga, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The melting and solidification of Pb thin films on pyrolytic graphite are investigated in situ by reflection high-energy electron diffraction. Thin films with thicknesses of 4-150 monolayers are investigated. The surface morphology of the thin films were studied by scanning electron microscopy. Superheating of the Pb thin films by 4±2 to 12±2 K is observed from diffraction intensity measurements. Upon cooling the substrate, the Pb on graphite is seen to supercool by ∼69±4 K.