Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza Aug 2017

Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza

Electrical & Computer Engineering Faculty Publications

Hydrogenated silicon (Si:H) thin films have been prepared by radio frequency (RF) magnetron sputtering. The effect of hydrogen gas concentration during sputtering on the resultant film structural and optical properties has been investigated by real time spectroscopic ellipsometry (RTSE) and grazing incidence x-ray diffraction (GIXRD). The analysis of in-situ RTSE data collected during sputter deposition tracks the evolution of surface roughness and film bulk layer thickness with time. Growth evolution diagrams depicting amorphous, nanocrystalline and mixed-phase regions for low and high deposition rate Si:H are constructed and the effects of process parameter (hydrogen gas concentration, total pressure and RF power) …


Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu Jan 2013

Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu

Open Access Theses & Dissertations

Hafnium oxide (HfO2) has emerged as the most promising high-k dielectric for Metal-Oxide-Semiconductor (MOS) devices and has been highlighted as the most suitable dielectric materials to replace silicon oxide because of its comprehensive performance. In the present research, yttrium-doped HfO2 (YDH) thin films were fabricated using RF magnetron sputter deposition onto Si (100) and quartz with a variable thickness. Cross-sectional scanning electron microscopy coupled with Filmetrics revealed that film thickness values range from 700 A° to 7500 A°. Electrical properties such as AC Resistivity and current-voltage (I-V) characteristics of YDH films were studied. YDH films that were relatively thin (<1500 A°) crystallized in monoclinic phase while thicker films crystallized in cubic phase. The band gap (Eg) of the films was calculated from the optical measurements. The band gap was found to be ∼5.60 eV for monoclinic while it is ∼6.05 eV for cubic phase of YDH films. Frequency dependence of the electrical resistivity (ρac) and the total conductivity of the films were measured. Resistivity decreased (by three orders of magnitude) with increasing frequency from 100 Hz to 1 MHz, attributed due to the hopping mechanism in YDH films. Whereas, while ρac∼1Ω-m at low frequencies (100 Hz), it decreased to ∼ 104 Ω-cm at higher frequencies (1 MHz). Aluminum (Al) metal electrodes were deposited to fabricate a thin film capacitor with YDH layer as dielectric film thereby employing Al-YDH-Si capacitor structure. The results indicate that the capacitance of the films decrease with increasing film thickness. A detailed analysis of the electrical characteristics of YDH films is presented.


Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal Jul 1993

Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.