Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Spin

Mathematics, Physics, and Computer Science Faculty Articles and Research

Articles 1 - 6 of 6

Full-Text Articles in Physics

Weak Values From Strong Interactions In Neutron Interferometry, Tobias Denkmayr, Justin Dressel, Hermann Geppert-Kleinrath, Yuji Hasegawa, Stephan Sponar Apr 2018

Weak Values From Strong Interactions In Neutron Interferometry, Tobias Denkmayr, Justin Dressel, Hermann Geppert-Kleinrath, Yuji Hasegawa, Stephan Sponar

Mathematics, Physics, and Computer Science Faculty Articles and Research

In their original framework weak values must be measured by weak measurements that are minimally disturbing, meaning that the coupling between an investigated quantum system and a measurement device has no influence on the evolution of the system. However, under certain circumstances this weakness of the interaction is not necessary. In that case weak values can still be exactly determined from the statistics of the outcomes of arbitrary-strength generalized measurements. Here, we report an experimental procedure for neutron matter-waves that extends the notion of generalized eigenvalues for the neutron’s path system to allow the exact determination of weak values using …


Weak Values Obtained In Matter-Wave Interferometry, Stephan Sponar, Tobias Denkmayr, Hermann Geppert, Hartmutt Lemmel, Alexandre Matzkin, Jeff Tollaksen, Yuji Hasegawa Jan 2015

Weak Values Obtained In Matter-Wave Interferometry, Stephan Sponar, Tobias Denkmayr, Hermann Geppert, Hartmutt Lemmel, Alexandre Matzkin, Jeff Tollaksen, Yuji Hasegawa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Weak values, introduced more than 25 years ago, underwent a metamorphosis from a theoretical curiosity to a powerful resource in photonics for exploring foundations of quantum mechanics, as well as a practical laboratory tool. Due to the tiny coherence volume of particles used in matter-wave optics, a straightforward implementation of weak measurements is not feasible. We have overcome this hurdle by developing a method to weakly measure a massive particle's spin component. A neutron optical approach is realized by utilizing neutron interferometry, where the neutron's spin is coupled weakly to its spatial degree of freedom. Here, we present how one …


Quantum Cheshire Cats, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich, Paul Skrzypczyk Jan 2013

Quantum Cheshire Cats, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich, Paul Skrzypczyk

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we present a quantum Cheshire Cat. In a pre- and post-selected experiment we find the Cat in one place, and its grin in another. The Cat is a photon, while the grin is its circular polarization.


Quantum Interference Experiments, Modular Variables And Weak Measurements, Jeff Tollaksen, Yakir Aharonov, Aharon Casher, Tirzah Kaufherr, Shmuel Nussinov Jan 2010

Quantum Interference Experiments, Modular Variables And Weak Measurements, Jeff Tollaksen, Yakir Aharonov, Aharon Casher, Tirzah Kaufherr, Shmuel Nussinov

Mathematics, Physics, and Computer Science Faculty Articles and Research

We address the problem of interference using the Heisenberg picture and highlight some new aspects through the use of pre-selection, post-selection, weak measurements and modular variables. We present a physical explanation for the different behaviors of a single particle when the distant slit is open or closed; instead of having a quantum wave that passes through all slits, we have a localized particle with non-local interactions with the other slit(s). We introduce a Gedanken experiment to measure this non-local exchange. While the Heisenberg and Schrodinger pictures are equivalent formulations of quantum mechanics, nevertheless, the results discussed here support a new …


A Time-Symmetric Formulation Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Jeff Tollaksen Jan 2010

A Time-Symmetric Formulation Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

Quantum mechanics allows one to independently select both the initial and final states of a single system. Such pre- and postselection reveals novel effects that challenge our ideas about what time is and how it flows.


Color Transparency In Qcd And Post-Selection In Quantum Mechanics, Shmuel Nussinov, Jeff Tollaksen Jan 2008

Color Transparency In Qcd And Post-Selection In Quantum Mechanics, Shmuel Nussinov, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

We discuss color transparency in the nuclear QCD context from the perspective of pre- and post-selected ensembles. We show that the small size of the hadronic states can be explained by the peculiar "force of post-selection," in contrast to the more standard explanation based on external forces.