Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Atmospheric Pressure He-Air Plasma Jet: Breakdown Process And Propagation Phenomenon, Asma Begum, Mounir Laroussi, Mohammad Rasel Pervez Jun 2013

Atmospheric Pressure He-Air Plasma Jet: Breakdown Process And Propagation Phenomenon, Asma Begum, Mounir Laroussi, Mohammad Rasel Pervez

Electrical & Computer Engineering Faculty Publications

In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet …


Ionization Of Rydberg Wave Packets By Subpicosecond, Half-Cycle Electromagnetic Pulses, C. Raman, C. W. S. Conover, C. I. Sukenik, P. H. Bucksbaum Apr 1996

Ionization Of Rydberg Wave Packets By Subpicosecond, Half-Cycle Electromagnetic Pulses, C. Raman, C. W. S. Conover, C. I. Sukenik, P. H. Bucksbaum

Physics Faculty Publications

We have studied the ionization of Rydberg wave packets by subpicosecond, nearly unipolar electromagnetic field pulses, in the regime where the duration of the electric field is less than the classical Kepler orbit time 2n3 for the wave packet. In contrast to the subpicosecond optical pulses, subpicosecond field pulses can ionize wave packets when the probability density near the inner turning point of the Kepler orbit is low. The transfer of energy from the electromagnetic field to essentially free electrons demonstrates that the pulses are substantially shorter than one field cycle. Such half-cycle pulses can track the wave packet throughout …