Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear physics

PDF

Doctoral Dissertations

Articles 1 - 5 of 5

Full-Text Articles in Physics

Short Range Correlation Measurements In The Quasielastic Region With An 11 Gev Beam, Casey Morean Dec 2023

Short Range Correlation Measurements In The Quasielastic Region With An 11 Gev Beam, Casey Morean

Doctoral Dissertations

Electron scattering is a significant means of studying internal high momentum
nucleon and quark distributions in nuclei. Thomas Jefferson National Accelerator
Facility (JLab) with its 11GeV beam is capable of studying high momentum nucleons
with unmatched precision. The role of short range nucleon configurations and
quark distributions is significant for understanding the dynamics of nuclei and their
underlying components. Scattering cross section measurements in the kinematic
regime x > 1, where the free nucleon is forbidden, are sensitive to high momentum
nucleons, which are believed to come from short range correlations (SRCs). SRCs are
strongly interacting, high momentum nucleons with a …


Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas May 2023

Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas

Doctoral Dissertations

Type Ia supernovae are thermonuclear explosions of white dwarfs (WD), electron-degenerate cores of old intermediate mass stars(under 8$M_{\odot}$). Reaching energies of $10^{51}$\si{\erg}, they outshine whole galaxies as they synthesize and distribute most of the iron group elements (IGE; V, Cr, Mn, Fe, Co, Ni) into the interstellar medium, thus being one of the main agents in cosmic chemical evolution. Also, given their notably homogeneous lightcurves, they form the last step in the cosmic distance ladder outdistancing Cepheid variables by orders of magnitude. Though calibration of said lightcurves is dependent on a high number of confirmed events, the limits of statistical …


Improving Sensitivities In 0𝒗ββ Decay Searches By Utilizing Pen As A Structural Scintillating Material, Brennan Theresa Hackett Aug 2022

Improving Sensitivities In 0𝒗ββ Decay Searches By Utilizing Pen As A Structural Scintillating Material, Brennan Theresa Hackett

Doctoral Dissertations

Neutrinoless double beta decay, 0nbb is currently the only experimental test to unambiguously determine the majorana nature of the neutrino. There is a large international effort to measure 0nbb decay, with several detector technologies being pursued. This dissertation will consider the LEGEND experiment (Large Enriched Germanium Experiment for Neutrinoless bb Decay), an international effort to measure 0nbb decay with 76Ge as both the target isotope and the detecting material.

LEGEND has a 200 kg stage and a 1000 kg stage, each requiring extremely low levels of background radiation at Qbb (E = 2.039 MeV). These ultra-low background levels …


The Upgraded Measurement Of The Neutron Lifetime Using The In-Beam Method, Jimmy P. Caylor May 2022

The Upgraded Measurement Of The Neutron Lifetime Using The In-Beam Method, Jimmy P. Caylor

Doctoral Dissertations

Precision measurements of neutron beta decay can provide answers to some of the most fundamental questions in particle physics, astrophysics and cosmology. Neutron beta decay is the simplest semi-leptonic decay; therefore, it provides a clean test of the charged current sector of the Standard Model (SM). A precise measurement of the neutron lifetime and λ, the ratio of axial vector and vector coupling constants of the weak interaction, allows for a determination of the Cabibbo-Kobayashi-Moskawa (CKM) matrix element Vud that is free from nuclear structure effects. The SM predicts that the CKM matrix is unitary; therefore, the measurement of …


On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil Aug 2015

On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil

Doctoral Dissertations

Neutron stars are the remnants of supernova explosions, and harbor the densest matter found in the universe. Because of their extreme physical characteristics, neutron stars make superb laboratories from which to study the nature of matter under conditions of extreme density that are not reproducible on Earth. The understanding of QCD matter is of fundamental importance to modern physics, and neutron stars provide a means of probing into the cold, dense region of the QCD phase diagram.

Isolated pulsars are rotating neutron stars that emit beams of electromagnetic radiation into space which appear like lighthouses to observers on Earth. Observations …