Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear physics

Nuclear

Physics Faculty Publications

Articles 1 - 10 of 10

Full-Text Articles in Physics

Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers Jan 2023

Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers

Physics Faculty Publications

The factorization theorems of QCD apply equally well to most simple quantum field theories that require renormalization but where direct calculations are much more straightforward. Working with these simpler theories is convenient for stress testing the limits of the factorization program and for examining general properties of the parton density functions or other correlation functions that might be necessary for a factorized description of a process. With this view in mind, we review the steps of factorization in a real scalar Yukawa field theory for both deep inelastic scattering and semi-inclusive deep inelastic scattering cross sections. In the case of …


Liouvillian Dynamics Of The Open Schwinger Model: String Breaking And Kinetic Dissipation In A Thermal Medium, Kyle Lee, James Mulligan, Felix Ringer, Xiaojun Yao Jan 2023

Liouvillian Dynamics Of The Open Schwinger Model: String Breaking And Kinetic Dissipation In A Thermal Medium, Kyle Lee, James Mulligan, Felix Ringer, Xiaojun Yao

Physics Faculty Publications

Understanding the dynamics of bound state formation is one of the fundamental questions in confining quantum field theories such as Quantum Chromodynamics (QCD). One hadronization mechanism that has garnered significant attention is the breaking of a string initially connecting a fermion and an antifermion. Deepening our understanding of real-time string-breaking dynamics with simpler, lower dimensional models like the Schwinger model can improve our understanding of the hadronization process in QCD and other confining systems found in condensed matter and statistical systems. In this paper, we consider the string-breaking dynamics within the Schwinger model and investigate its modification inside a thermal …


Deeply Virtual Compton Scattering Cross Section At High Bjorken 𝓍B, F. Georges, M.N.H. Rashad, A. Stefanko, J. Zhang, Y. Zhao, P. Zhu, Et Al. Jan 2022

Deeply Virtual Compton Scattering Cross Section At High Bjorken 𝓍B, F. Georges, M.N.H. Rashad, A. Stefanko, J. Zhang, Y. Zhao, P. Zhu, Et Al.

Physics Faculty Publications

We report high-precision measurements of the deeply virtual Compton scattering (DVCS) cross section at high values of the Bjorken variable 𝓍B. DVCS is sensitive to the generalized parton distributions of the nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic expression of the DVCS cross section for all possible polarization states of the initial and final electron and nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving Compton form factors (CFFs) of the nucleon as a function of 𝓍B, while systematically including helicity flip amplitudes. …


Rapidity Evolution Of Tmds With Running Coupling, Ian Balitsky, Giovanni A. Chirilli Jan 2022

Rapidity Evolution Of Tmds With Running Coupling, Ian Balitsky, Giovanni A. Chirilli

Physics Faculty Publications

The scale of a coupling constant for rapidity-only evolution of transverse-momentum dependent (TMD) operators in the Sudakov kinematic region is calculated using the Brodsky-Lepage-Mackenzie optimal scale setting [S. J. Brodsky et al., Phys. Rev. D 28, 228 (1983).]. The effective argument of a coupling constant is halfway in the logarithmical scale between the transverse momentum and energy of TMD distribution. The resulting rapidity-only evolution equation is solved for quark and gluon TMDs.


Ruling Out Color Transparency In Quasielastic ¹²C(E,E'P) Up To Q² Of 14.2 (Gev/C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, F. Hauenstein, C. Yero, J. Zhang, Et Al., Hall C. Collaboration Jan 2021

Ruling Out Color Transparency In Quasielastic ¹²C(E,E'P) Up To Q² Of 14.2 (Gev/C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, F. Hauenstein, C. Yero, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

Quasielastic 12C(e,e'p) scattering was measured at spacelike 4-momentum transfer squared Q2 = 8, 9.4, 11.4, and 14.2 (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5 GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e, e'p) reactions. These results impose strict constraints on models of color …


Unpolarized Gluon Distribution In The Nucleon From Lattice Quantum Chromodynamics, Tanjib Khan, Raza Sabbir Sufian, Joseph Karpie, Christopher J. Monahan, Colin Egerer, Bálint Joó, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2021

Unpolarized Gluon Distribution In The Nucleon From Lattice Quantum Chromodynamics, Tanjib Khan, Raza Sabbir Sufian, Joseph Karpie, Christopher J. Monahan, Colin Egerer, Bálint Joó, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the nucleon from a first principles lattice quantum chromodynamics calculation. We carry out the lattice calculation on a 323 × 64 ensemble with a pion mass of 358 MeV and lattice spacing of 0.094 fm. We construct the nucleon interpolating fields using the distillation technique, flow the gauge fields using the gradient flow, and solve the summed generalized eigenvalue problem to determine the gluonic matrix elements. Combining these techniques allows us to provide a statistically well-controlled Ioffe-time distribution and unpolarized gluon parton distribution function. We …


Observation Of Beam Spin Asymmetries In The Process Ep → E'Π⁺Π⁻ X With Clas 12, T. B. Hayward, C. Dilks, A. Vossen, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Mariana Khachatryan, Sebastian E. Kuhn, Yelena Prok, B. Yale, N. Zachariou, J. Zhang, Et Al., Clas Collaboration Jan 2021

Observation Of Beam Spin Asymmetries In The Process Ep → E'Π⁺Π⁻ X With Clas 12, T. B. Hayward, C. Dilks, A. Vossen, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Mariana Khachatryan, Sebastian E. Kuhn, Yelena Prok, B. Yale, N. Zachariou, J. Zhang, Et Al., Clas Collaboration

Physics Faculty Publications

The observation of beam spin asymmetries in two-pion production in semi-inclusive deep inelastic scattering off an unpolarized proton target is reported. The data presented here were taken in the fall of 2018 with the CLAS12 spectrometer using a 10.6 GeV longitudinally spin-polarized electron beam delivered by CEBAF at JLab. The measured asymmetries provide the first opportunity to extract the parton distribution function e(x), which provides information about the interaction between gluons and quarks, in a collinear framework that offers cleaner access than previous measurements. The asymmetries also constitute the first ever signal sensitive to the helicity-dependent two-pion fragmentation function …


First Measurement Of Near-Threshold J/ᴪ Exclusive Photoproduction Off The Proton, M. Ali, M. Amaryan, E.G. Anassontzis, Q. Zhou, X. Zhou, B. Zihlmann, Gluex Collaboration Jan 2019

First Measurement Of Near-Threshold J/ᴪ Exclusive Photoproduction Off The Proton, M. Ali, M. Amaryan, E.G. Anassontzis, Q. Zhou, X. Zhou, B. Zihlmann, Gluex Collaboration

Physics Faculty Publications

We report on the measurement of the γp -> J/ψp cross section from Eγ = 11.8 GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment. We find that the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section dσ/dt has an exponential slope of 1.67 ± 0.39 GeV-2 at 10.7 GeV average energy. The LHCb pentaquark candidates P+c can be produced in the s channel of this reaction. We see no evidence for them and set model-dependent upper …


Measurements Of Ep → E′Π+Π-P′ Cross Sections With Clas At 1.40 Gev < W < 2.0 Gev And 2.0 Gev² < Q² < 5.0 Gev², E.L. Isupov, V.D. Burkert, D.S. Carman, R. W. Gothe, R. Hicks, B. S. Ishkhanov, V. I. Mokeev, K. P. Adhikari, S. Adhikari, D. Adikaram, M. J. Amaryan, G. Charles, A. Klein, Y. Prok, B. Torayev Jan 2017

Measurements Of Ep → E′Π+Π-P′ Cross Sections With Clas At 1.40 Gev < W < 2.0 Gev And 2.0 Gev² < Q² < 5.0 Gev², E.L. Isupov, V.D. Burkert, D.S. Carman, R. W. Gothe, R. Hicks, B. S. Ishkhanov, V. I. Mokeev, K. P. Adhikari, S. Adhikari, D. Adikaram, M. J. Amaryan, G. Charles, A. Klein, Y. Prok, B. Torayev

Physics Faculty Publications

This paper reports new exclusive cross sections for ep → e′π+π-p′ using the CLAS detector at Jefferson Laboratory. These results are presented for the first time at photon virtualities 2.0GeV2 2 < 5.0GeV2 in the center-of-mass energy range 1.4 GeV < W < 2.0 GeV, which covers a large part of the nucleon resonance region. Using a model developed for the phenomenological analysis of electroproduction data, we see strong indications that the relative contributions from the resonant cross sections at W < 1.74 GeV increase with Q2. These data considerably extend the kinematic reach of previous measurements. Exclusive ep → e′π+π-p′ cross section measurements are of particular importance for the extraction of resonance electrocouplings in the mass range above 1.6 GeV.


Isomers And Seniority In The Trans-Pb Nuclei, J. J. Ressler, C. W. Beausang, R. F. Casten, N. V. Zamfir, H. Ai, H. Amro, M. Babilon, R. Cakirli, J. A. Caggiano, G. Gurdal, A. Heinz, R. O. Hughes, S. D. Langdown, E. A. Mccutchan, D. A. Meyer, C. Plettner, J. Qian, P. H. Regan, M.J. S. Sciacchitano, N. J. Thomas, E. Williams, A. Yamamoto Sep 2005

Isomers And Seniority In The Trans-Pb Nuclei, J. J. Ressler, C. W. Beausang, R. F. Casten, N. V. Zamfir, H. Ai, H. Amro, M. Babilon, R. Cakirli, J. A. Caggiano, G. Gurdal, A. Heinz, R. O. Hughes, S. D. Langdown, E. A. Mccutchan, D. A. Meyer, C. Plettner, J. Qian, P. H. Regan, M.J. S. Sciacchitano, N. J. Thomas, E. Williams, A. Yamamoto

Physics Faculty Publications

Low-energy excited states of 210Ra and 208Ra were investigated at the Wright Nuclear Structure Laboratory of Yale University. Fusion evaporation recoils were selected using the gas-filled spectrometer, SASSYER. Delayed γ -rays, following isomeric decays, were detected at the focal plane of SASSYER with a small array of HPGe detectors. Transitions following the proposed J π = 8+ isomers were observed, and the half-lives measured. The experiments are discussed and results compared to expectations from the seniority scheme.