Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoparticles

Physics Faculty Research

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Fracture And Failure Of Nanoparticle Monolayers And Multilayers, Yifan Wang, Pongsakorn Kanjanaboos, Edward Barry Edward Barry, Sean P. Mcbride, Xiao-Min Lin, Heinrich M. Jaeger Jan 2014

Fracture And Failure Of Nanoparticle Monolayers And Multilayers, Yifan Wang, Pongsakorn Kanjanaboos, Edward Barry Edward Barry, Sean P. Mcbride, Xiao-Min Lin, Heinrich M. Jaeger

Physics Faculty Research

We present an experimental investigation of fracture in self-assembled gold nanoparticle mono- and multilayers attached to elastomer substrates and subjected to tensile stress. Imaging the fracture patterns down to the scale of single particles provides detailed information about the crack width distribution and allows us to compare the scaling of the average crack spacing as a function of strain with predictions by shear-lag models. With increasing particle size, the fracture strength is found to increase while it decreases as the film thickness is built up layer by layer, indicating stress inhomogeneity in the thickness dimension.


Influence Of Line Tension On Spherical Colloidal Particles At Liquid-Vapor Interfaces, Sean P. Mcbride, Bruce M. Law Nov 2012

Influence Of Line Tension On Spherical Colloidal Particles At Liquid-Vapor Interfaces, Sean P. Mcbride, Bruce M. Law

Physics Faculty Research

Atomic force microscopy (AFM) imaging of isolated submicron dodecyltrichlorosilane coated silica spheres, immobilized at the liquid polystyrene- (PS-) air interface at the PS glass transition temperature, Tg , allows for determination of the contact angle θ versus particle radius R . At Tg , all θ versus R measurements are well described by the modified Young’s equation for a line tension τ=0.93  nN . The AFM measurements are also consistent with a minimum contact angle θmin and minimum radius Rmin , below which single isolated silica spheres cannot exist at the PS-air interface.