Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Aug 2019

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In the original paper, a calibration error exists in the image-formation model used to analyze experimental images taken by our microscope, causing a bias in the orientation measurements in Figs. 2 and 3. The updated measurements are shown in Fig. E1. We have also updated the supplementary material for the original article to discuss the revised PSF model and estimation algorithms (supplementary material 2) and show the revised model and measurements (Figs. S1, S3, S7, S8, and S10–S13).


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy …


Additional Results For "Joint Entropy Of Continuously Differentiable Ultrasonic Waveforms" [J. Acoust. Soc. Am. 133(1), 283-300 (2013)], M S. Hughes, J N. Marsh, S A. Wickline, John E. Mccarthy Jan 2015

Additional Results For "Joint Entropy Of Continuously Differentiable Ultrasonic Waveforms" [J. Acoust. Soc. Am. 133(1), 283-300 (2013)], M S. Hughes, J N. Marsh, S A. Wickline, John E. Mccarthy

Mathematics Faculty Publications

Previous results on the use of joint entropy for detection of targeted nanoparticles accumulating in the neovasculature of MDA435 tumors [Fig. 7 of M. S. Hughes et al., J. Acoust. Soc. Am. 133, 283–300 (2013)] are extended, with sensitivity improving by nearly another factor of 2. This result is obtained using a “quasi-optimal” reference waveform in the computation of the joint entropy imaging technique used to image the accumulating nanoparticles.