Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Magnetic Nanoparticles For Hyperthermia For Cancer Treatment, Bianca Paola Meneses Brassea Jan 2019

Magnetic Nanoparticles For Hyperthermia For Cancer Treatment, Bianca Paola Meneses Brassea

Open Access Theses & Dissertations

Fe3O4 and NixCu4-x magnetic nanoparticles were synthesized using supercritical conditions of liquids and wet chemistry, respectively. Characterization methods (VSM, SEM, TEM, and magnetic hyperthermia) yielded results that prove feasibility for magnetic hyperthermia for cancer treatment.


Magnetic Properties Of Fe Doped, Co Doped, And Fe+Co Co-Doped Zno, J. J. Beltrán, J. A. Osorio, C. A. Barrero, Charles B. Hanna, A. Punnoose May 2013

Magnetic Properties Of Fe Doped, Co Doped, And Fe+Co Co-Doped Zno, J. J. Beltrán, J. A. Osorio, C. A. Barrero, Charles B. Hanna, A. Punnoose

Physics Faculty Publications and Presentations

The structural, electronic, and magnetic properties of Zn0.95Co0.05O, Zn0.95Fe0.05O, and Zn0.90Fe0.05Co0.05O nanoparticles prepared by a sol-gel method are presented and discussed. X-ray diffraction and optical analysis indicated that high spin Co2+ ions substitute for the Zn2+ ions in tetrahedral sites. 57Fe Mössbauer spectroscopy showed the presence of isolated paramagnetic Fe3+ ions in both Fe doped and Fe+Co co-doped ZnO, however, no evidence of ferromagnetically ordered Fe3+ ions is observed. In the Zn0.95Fe0.05O sample, weak presence of ZnFe …


Solubility Extension And Phase Formation In Gas-Condensed Co–W Nanoclusters, Farhad Golkar, Matthew J. Kramer, Ames Laboratory, Ralph A. Skomski, David J. Sellmyer, Jeffrey E. Shield Jan 2013

Solubility Extension And Phase Formation In Gas-Condensed Co–W Nanoclusters, Farhad Golkar, Matthew J. Kramer, Ames Laboratory, Ralph A. Skomski, David J. Sellmyer, Jeffrey E. Shield

David Sellmyer Publications

Co–W alloy clusters with extended solubility of W in hcp Co were produced by inert-gas condensa-tion. The structural state of the as-deposited Co–W clusters was found to be critically dependent on processing parameters such as the cooling scheme and sputtering power. For the water-cooled clus-ters, the mean size and percent crystalline were strongly dependent on sputtering power, while the percent crystalline of the liquid nitrogen-cooled clusters was not as affected by the sputtering power. At low sputtering powers, the water-cooled clusters were predominantly amorphous, but became increasingly more crystalline as the sputtering power increased. The predominant crystalline phase was hcp …