Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Jun 2014

Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Graduate Student Posters

While the mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions, observations of these anomalies at midlatitudes are sparse. The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) collected a very dense set of temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. This work focuses on the extensive Rayleigh lidar observations made during seven …


Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Dec 2013

Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Graduate Student Posters

Sudden Stratospheric Warmings (SSWs) are major disturbances in the polar region of the winter hemisphere that cause major changes in stratospheric temperature and circulation. SSWs are characterized by a temperature increase of tens of degrees Kelvin, averaged over 60°-90° latitude, and a weakening of the polar vortex that persists for the order of a week at the 10 hPa level (roughly 32 km) [Labitzke and Naujokat, 2000]. The polar vortices are cyclones centered on both of the Earth’s poles that are present from the mid-troposphere to the lower stratosphere. Eastward zonal winds define the strong polar vortices in the winter. …


Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick Oct 2013

Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick

Graduate Student Posters

Rayleigh lidar systems have historically made ground-based observations of the upper atmosphere (stratosphere and mesosphere) from 35-90 km. This technology has helped fill the data collection gap between the troposphere and space. Recently our Rayleigh lidar group at the Atmospheric Lidar Observatory on the campus of Utah State University (42° N, 112° W) upgraded the original lidar system in order to extend the measurement range for neutral densities and temperatures to higher altitudes and has increased the upper limit, so far, from 90 to 110 km. Next, we will extend the lower altitude limit downward to 15 km. This will …


Characterization Of An Axially Sampling Time-Of-Flight Mass Spectrometer For Upper Atmospheric Measurements, Addison E. Everett, Scott Schicker, Mike Watson, Wayne Sanderson, Dalon Work, Cameron Weston, James Dyer, Erik Syrstad May 2012

Characterization Of An Axially Sampling Time-Of-Flight Mass Spectrometer For Upper Atmospheric Measurements, Addison E. Everett, Scott Schicker, Mike Watson, Wayne Sanderson, Dalon Work, Cameron Weston, James Dyer, Erik Syrstad

Graduate Student Posters

The mesosphere/lower thermosphere (MLT) lies between the turbulent mixing and diffusive layers of the earth’s upper atmosphere. Temperatures in this region are varied and include the coldest region of the earth’s atmosphere, the mesopause. Too high for aircraft and too low for satellites, the only method of direct access to the MLT is by sounding rocket for periods of at most a few minutes. Because of this, the MLT is the most difficult region of the earth’s atmosphere to access and is therefore the least understood region of the earth’s atmosphere. Accurate in-situ measurements of MLT species are important for …


A New Mass Spectrometer For Upper Atmospheric Measurements In The Auroral Region, Addison E. Everett, James S. Dyer, Mike Watson, Wayne Sanderson, Scott Schicker, Dalon Work, Christopher J. Mertens, Scott M. Bailey, Erik A. Syrstad Dec 2011

A New Mass Spectrometer For Upper Atmospheric Measurements In The Auroral Region, Addison E. Everett, James S. Dyer, Mike Watson, Wayne Sanderson, Scott Schicker, Dalon Work, Christopher J. Mertens, Scott M. Bailey, Erik A. Syrstad

Graduate Student Posters

We have previously presented a new rocket-borne time-of-flight mass spectrometer (TOF-MS) for measurements in the mesosphere / lower thermosphere (MLT). Traditionally, mass spectrometry in the MLT has been difficult, mainly due to the elevated ambient pressures of the MLT and high speeds of a sounding rocket flight, which affect the direct sampling of the ambient atmosphere and spatial resolution. The TOF-MS is a versatile, inherently adaptable, axial-sampling instrument, capable of operating in a traditional TOF mode or in a multiplexing Hadamard-transform mode where high spatial resolution is desired. To minimize bow shock effects at low altitudes (~70-110km), the ram surface …


The First Ten Months Of Investigation Of Gravity Waves And Temperature Variability Over The Andes, Jonathan Pugmire, Neal Criddle, Michael J. Taylor, P. D. Pautet, Yucheng Zhao Oct 2010

The First Ten Months Of Investigation Of Gravity Waves And Temperature Variability Over The Andes, Jonathan Pugmire, Neal Criddle, Michael J. Taylor, P. D. Pautet, Yucheng Zhao

Graduate Student Posters

The Andes region is an excellent natural laboratory for investigating gravity wave influences on the Upper Mesospheric and Lower Thermospheric (MLT) dynamics. The instrument suite that comprised the very successful Maui-MALT program was recently re-located to a new Andes Lidar Observatory (ALO) located at Cerro Pachon, Chile to obtain in-depth seasonal measurements of MLT dynamics over the Andes mountains. As part of the instrument set the Utah State University CEDAR Mesospheric Temperature Mapper (MTM) has operated continuously since August 2009 measuring the near infrared OH(6,2) band and the O2(0,1) Atmospheric band intensity and temperature perturbations. This poster focuses on an …