Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Neutral Nitrogen Acceptors In Zno: The 67Zn Hyperfine Interactions, Eric M. Golden, S. M. Evans, Larry E. Halliburton, Nancy C. Giles Mar 2014

Neutral Nitrogen Acceptors In Zno: The 67Zn Hyperfine Interactions, Eric M. Golden, S. M. Evans, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to characterize the 67Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N) initially present in the crystal are converted to their paramagnetic neutral charge state (N0) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N0 acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion …


Insertion Of Lithium Ions Into Tio2 (Rutile) Crystals: An Electron Paramagnetic Resonance Study Of The Li-Associated Ti3+ Small Polaron, A. T. Brant, Nancy C. Giles, Larry E. Halliburton Feb 2013

Insertion Of Lithium Ions Into Tio2 (Rutile) Crystals: An Electron Paramagnetic Resonance Study Of The Li-Associated Ti3+ Small Polaron, A. T. Brant, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify a Ti3+-Li+ complex in TiO2 crystals having the rutile structure. This defect consists of an interstitial Li+ ion adjacent to a substitutional Ti3+ ion (the unpaired electron on the Ti3+ ion provides charge compensation for the Li+ ion). The neutral Ti3+-Li+ complex is best described as a donor-bound small polaron and is similar in structure to the recently reported neutral fluorine and hydrogen donors in TiO2 (rutile). Lithium ions are diffused into the crystals at …


Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya Jan 2008

Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya

Faculty Publications

A high-throughput high-sensitivity optical technique for measuringmagnetostriction of thin-film composition-spread samples has been developed. It determines the magnetostriction by measuring the induced deflection of micromachined cantilever unimorph samples. Magnetostrictionmeasurements have been performed on as-deposited Fe–Ga and Fe–Ga–Al thin-film composition spreads. The thin-film Fe–Ga spreads display a similar compositional variation of magnetostriction as bulk. A previously undiscovered peak in magnetostriction at low Ga content was also observed and attributed to a maximum in the magnetocrystalline anisotropy. Magnetostrictive mapping of the Fe–Ga–Al ternary system reveals the possibility of substituting up to 8at.%Al in Fe70Ga30 without significant degradation of magnetostriction.


Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt Jan 2007

Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt

Faculty Publications

A near-field room temperature scanning magnetic probe microscope has been developed using a laminated magnetoelectric sensor. The simple trilayer longitudinal-transverse mode sensor, fabricated using Metglas as the magnetostrictive layer and polyvinylidene fluoride as the piezoelectric layer, shows an ac field sensitivity of 467±3μV∕Oe in the measured frequency range of 200Hz–8kHz. The microscope was used to image a 2mm diameter ring carrying an ac current as low as 10−5A. ac fields as small as 3×10−10T have been detected.