Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman Jan 2018

Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman

Theses and Dissertations--Physics and Astronomy

Charge-Conjugation (C) and Charge-Conjugation-Parity (CP) Violation is one of the three Sakharov conditions to explain via baryogenesis the observed baryon asymmetry of the universe (BAU). The Standard Model of particle physics (SM) contains sources of CP violation, but cannot explain the BAU. This motivates searches for new physics beyond the standard model (BSM) which address the Sakharov criteria, including high-precision searches for new sources of CPV in systems for which the SM contribution is small, but larger effects may be present in BSM theories. A promising example is the search for the electric dipole moment of the neutron (nEDM), which …


Orion's Veil: Magnetic Field Strengths And Other Properties Of A Pdr In Front Of The Trapezium Cluster, Thomas H. Troland, W. M. Goss, C. L. Brogan, R. M. Crutcher, D. A. Roberts Jun 2016

Orion's Veil: Magnetic Field Strengths And Other Properties Of A Pdr In Front Of The Trapezium Cluster, Thomas H. Troland, W. M. Goss, C. L. Brogan, R. M. Crutcher, D. A. Roberts

Physics and Astronomy Faculty Publications

We present an analysis of physical conditions in the Orion Veil, an atomic photon-dominated region (PDR) that lies just in front (≈2 pc) of the Trapezium stars of Orion. This region offers an unusual opportunity to study the properties of PDRs, including the magnetic field. We have obtained 21 cm H i and 18 cm (1665 and 1667 MHz) OH Zeeman effect data that yield images of the line-of-sight magnetic field strength B los in atomic and molecular regions of the Veil. We find B los ≈ −50 to −75 μG in the atomic gas across much of the …


Orion's Veil. Iv. H2 Excitation And Geometry, N. P. Abel, Gary J. Ferland, C. R. O'Dell, Thomas H. Troland Mar 2016

Orion's Veil. Iv. H2 Excitation And Geometry, N. P. Abel, Gary J. Ferland, C. R. O'Dell, Thomas H. Troland

Physics and Astronomy Faculty Publications

The foreground Veil of material that lies in front of the Orion Nebula is the best studied sample of the interstellar medium because we know where it is located, how it is illuminated, and the balance of thermal and magnetic energy. In this work, we present high-resolution STIS observations toward the Trapezium, with the goal of better understanding the chemistry and geometry of the two primary Veil layers, along with ionized gas along the line of sight. The most complete characterization of the rotational/vibrational column densities of H2 in the almost purely atomic components of the Veil are presented, …


A Sensitive Faraday Rotation Setup Using Triple Modulation, G. Phelps, Josh Abney, Mark Broering, Wolfgang Korsch Jul 2015

A Sensitive Faraday Rotation Setup Using Triple Modulation, G. Phelps, Josh Abney, Mark Broering, Wolfgang Korsch

Physics and Astronomy Faculty Publications

The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants …


A Slow Neutron Polarimeter For The Measurement Of Parity-Odd Neutron Rotary Power, W. M. Snow, E. Anderson, L. Barrón-Palos, C. D. Bass, T. D. Bass, B. E. Crawford, Christopher Crawford, J. M. Dawkins, D. Esposito, J. Fry, H. Gardiner, K. Gan, C. Haddock, B. R. Heckel, A. T. Holley, J. C. Horton, C. Huffer, J. Lieffers, D. Luo, M. Maldonado-Velázquez, D. M. Markoff, A. M. Micherdzinska, H. P. Mumm, J. S. Nico, M. Sarsour, S. Santra, E. I. Sharapov, H. E. Swanson, S. B. Walbridge, V. Zhumabekova May 2015

A Slow Neutron Polarimeter For The Measurement Of Parity-Odd Neutron Rotary Power, W. M. Snow, E. Anderson, L. Barrón-Palos, C. D. Bass, T. D. Bass, B. E. Crawford, Christopher Crawford, J. M. Dawkins, D. Esposito, J. Fry, H. Gardiner, K. Gan, C. Haddock, B. R. Heckel, A. T. Holley, J. C. Horton, C. Huffer, J. Lieffers, D. Luo, M. Maldonado-Velázquez, D. M. Markoff, A. M. Micherdzinska, H. P. Mumm, J. S. Nico, M. Sarsour, S. Santra, E. I. Sharapov, H. E. Swanson, S. B. Walbridge, V. Zhumabekova

Physics and Astronomy Faculty Publications

We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10−7 rad/m.


Phenomenology Of N- Oscillations Revisited, Susan Gardner, Ehsan Jafari May 2015

Phenomenology Of N-N̄ Oscillations Revisited, Susan Gardner, Ehsan Jafari

Physics and Astronomy Faculty Publications

We revisit the phenomenology of n−n̄ oscillations in the presence of external magnetic fields, highlighting the role of spin. We show, contrary to long-held belief, that the n−n̄ transition rate need not be suppressed, opening new opportunities for its empirical study.


Magnetic Response Of Aperiodic Wire Networks Based On Fibonacci Distortions Of Square Antidot Lattices, Barry Farmer, Vinayak Bhat, J. Sklenar, Eric Teipel, Justin Woods, J. B. Ketterson, J. Todd Hastings, Lance Delong Mar 2015

Magnetic Response Of Aperiodic Wire Networks Based On Fibonacci Distortions Of Square Antidot Lattices, Barry Farmer, Vinayak Bhat, J. Sklenar, Eric Teipel, Justin Woods, J. B. Ketterson, J. Todd Hastings, Lance Delong

Physics and Astronomy Faculty Publications

The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted according to an aperiodic Fibonacci sequence applied to two lattice translations, d1  = 1618 nm and d2  = 1000 nm. The wire segment thickness is fixed at t = 25 nm, and the width W varies from 80 to 510 nm. We measured the DC magnetization between room temperature and 5 K. Room-temperature, narrow-band (9.7 GHz) ferromagnetic resonance …


Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi Feb 2015

Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi

Center for Advanced Materials Faculty Publications

Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr2IrO4 are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr2IrO4 were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an …


Estimations Of The Magnetic Field Strength In The Torus Of Ic 5063 Using Near-Infrared Polarimetry, E. Lopez-Rodriguez, C. Packham, S. Young, Moshe Elitzur, N. A. Levenson, R. E. Mason, C. Ramos Almeida, A. Alonso-Herrero, T. J. Jones, E. Perlman May 2013

Estimations Of The Magnetic Field Strength In The Torus Of Ic 5063 Using Near-Infrared Polarimetry, E. Lopez-Rodriguez, C. Packham, S. Young, Moshe Elitzur, N. A. Levenson, R. E. Mason, C. Ramos Almeida, A. Alonso-Herrero, T. J. Jones, E. Perlman

Physics and Astronomy Faculty Publications

An optically and geometrically thick torus obscures the central engine of active galactic nuclei (AGN) from some lines of sight. From a magnetohydrodynamical framework, the torus can be considered to be a particular region of clouds surrounding the central engine where the clouds are dusty and optically thick. In this framework, the magnetic field plays an important role in the creation, morphology and evolution of the torus. If the dust grains within the clouds are assumed to be aligned by paramagnetic alignment, then the ratio of the intrinsic polarization and visual extinction, P(per cent)/Av, is a …


Strongly Localized Magnetization Modes In Permalloy Antidot Lattices, J. Sklenar, V. S. Bhat, Lance E. De Long, O. Heinonen, J. B. Ketterson Apr 2013

Strongly Localized Magnetization Modes In Permalloy Antidot Lattices, J. Sklenar, V. S. Bhat, Lance E. De Long, O. Heinonen, J. B. Ketterson

Physics and Astronomy Faculty Publications

Antidot lattices (ADLs) patterned into soft magnetic thin films exhibit rich ferromagnetic resonance (FMR) spectra corresponding to many different magnetization modes. One of the predicted modes is highly localized at the edges of the antidots; this mode is difficult to detect experimentally. Here we present FMR data for a permalloy thin film patterned into a square array of square antidots. Comparison of these data with micromagnetic simulations permits identification of several edge modes. Our simulations also reveal the effect of the antidot shape on the mode dispersion.


Physical Conditions In A Galactic Star Forming Region W22, Akshaya Rane Jan 2011

Physical Conditions In A Galactic Star Forming Region W22, Akshaya Rane

University of Kentucky Master's Theses

This document describes study of an active star forming region in our galaxy (the Milky Way) known as W22. Physical conditions in these regions can help us in understanding star formation processes in the universe and hence the structure and evolution of the universe. Zeeman effect measurements in 18 cm OH absorption line were carried out in order to estimate the line of sight magnetic field strength in the molecular cloud associated with this star forming region. Other physical parameters such as hydrogen column density, optical depth, critical magnetic field were also determined from these measurements. The region was mapped …