Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Structure Symmetry Determination And Magnetic Evolution In Sr2Ir1−XRhXO4, Feng Ye, Xiaoping Wang, Christina Hoffmann, Jinchen Wang, Songxue Chi, Masaaki Matsuda, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Gang Cao Nov 2015

Structure Symmetry Determination And Magnetic Evolution In Sr2Ir1−XRhXO4, Feng Ye, Xiaoping Wang, Christina Hoffmann, Jinchen Wang, Songxue Chi, Masaaki Matsuda, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Gang Cao

Physics and Astronomy Faculty Publications

We use single-crystal neutron diffraction to determine the crystal structure symmetry and the magnetic evolution in the rhodium-doped iridates Sr2Ir1−xRhxO4 (0≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21μB/Ir for x=0 to 0.18μB/Ir for x=0.12. The magnetic structure …


Tunable Magnetic Properties Of Transition Metal Doped Mos2, Antonis N. Andiotis, Madhu Menon Sep 2014

Tunable Magnetic Properties Of Transition Metal Doped Mos2, Antonis N. Andiotis, Madhu Menon

Physics and Astronomy Faculty Publications

We report a detailed investigation of the electronic and magnetic properties of the transition metal (TM) doped two-dimensional (2D) MoS2 using ab initio calculations. The doping is achieved by substituting two or more Mo atoms by TM atoms of the 3d series. Additionally, the effect of codoping on the 2D MoS2 by cation-cation and cation-anion pairs is also investigated. Our results demonstrate that the TM doping of 2D MoS2 leads to a significant reduction of the energy gap and the appearance of magnetic features whose major characteristic is the ferromagnetic coupling of the TM dopants. The …


Recent Ideas On The Calculation Of Lepton Anomalous Magnetic Moments, Michael I. Eides Sep 2014

Recent Ideas On The Calculation Of Lepton Anomalous Magnetic Moments, Michael I. Eides

Physics and Astronomy Faculty Publications

We discuss the recent claim [G. Mishima, arXiv:1311.7109; M. Fael and M. Passera, arXiv:1402.1575 [Phys. Rev. D (to be published)]] about discovery of a nonperturbative quantum-electrodynamic contribution of order (α/π)5 to lepton anomalous magnetic moments. We explain why this nonperturbative correction does not exist.


Resonant Microwave Cavity For 8.5-12 Ghz Optically Detected Electron Spin Resonance With Simultaneous Nuclear Magnetic Resonance, John S. Colton, L. R. Wienkes Mar 2009

Resonant Microwave Cavity For 8.5-12 Ghz Optically Detected Electron Spin Resonance With Simultaneous Nuclear Magnetic Resonance, John S. Colton, L. R. Wienkes

Faculty Publications

We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE 011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption …