Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Physics

Effect Of Sudden Stratospheric Warmingon Lunar Tidal Modulation Of The Equatorial Electrojet, J. Park, H. Luhr, M. Kunze, Bela G. Fejer, K. W. Min Mar 2012

Effect Of Sudden Stratospheric Warmingon Lunar Tidal Modulation Of The Equatorial Electrojet, J. Park, H. Luhr, M. Kunze, Bela G. Fejer, K. W. Min

Bela G. Fejer

[1] Using the equatorial electrojet (EEJ) peak current intensity as deduced from CHAMP magnetic observations from the years 2001 through 2009, we investigated the relationship between sudden stratospheric warming (SSW) and lunitidal signatures in the tropical ionosphere. There is a practically one-to-one correspondence between midwinter SSW periods and the strongest 13 day modulation of the EEJ strength as observed by CHAMP. That is, all the midwinter SSW periods from December 2001 to August 2009 were accompanied by an enhanced 13 day modulation of the EEJ strength. No other geophysical phenomenon brought about as strong a 13 day modulation as those ...


Observations Of The Vertical Ion Drift In The Equatorial Ionosphere During The Solar Minimum Period Of 2009, R. A. Stoneback, R. A. Heelis, A. G. Burrell, W. R. Coley, Bela G. Fejer, E. Pacheco Dec 2011

Observations Of The Vertical Ion Drift In The Equatorial Ionosphere During The Solar Minimum Period Of 2009, R. A. Stoneback, R. A. Heelis, A. G. Burrell, W. R. Coley, Bela G. Fejer, E. Pacheco

Bela G. Fejer

[1] The extended solar minimum conditions in 2008 and 2009 presented an opportunity to investigate the ionosphere at lower solar activity levels than previously observed. The Coupled Ion Neutral Dynamics Investigation (CINDI) Ion Velocity Meter (IVM) instrument onboard the Communication/Navigation Outage Forecasting System is used to construct the median meridional (vertical) ion drifts, ion densities, and O+ concentrations during periods of low geomagnetic activity for four characteristic seasons each year spanning late 2008 to 2010. The presence of a large semidiurnal component in the ion drift variation at the equator produced significant differences from typical ionospheric conditions. Instead of ...


Enhanced Lunar Semidiurnal Equatorial Vertical Plasma Drifts During Sudden Stratospheric Warmings, Bela G. Fejer, B. D. Tracy, J. L. Chau Nov 2011

Enhanced Lunar Semidiurnal Equatorial Vertical Plasma Drifts During Sudden Stratospheric Warmings, Bela G. Fejer, B. D. Tracy, J. L. Chau

Bela G. Fejer

[1] Large scale electrodynamic and plasma density variations in the low latitude ionosphere have recently been associated with sudden stratospheric warming (SSW) events. We present average patterns of largely enhanced lunar semidiurnal equatorial vertical plasma drift perturbations during arctic winter low and high solar flux SSW events. These perturbations play a dominant role in the electrodynamic response of the low latitude ionosphere to SSWs. Our models indicate that the amplitudes of the enhanced lunar semidiurnal drifts are strongly local time and solar flux dependent, with largest values during early morning low solar flux SSW periods. These results suggest that ionospheric ...


Lunar Dependent Equatorial Ionospheric Effects During Sudden Stratosphericwarmings, Bela G. Fejer, M. E. Olson, J. L. Chau, C. Stolle, H. Luhr, L. P. Goncharenko, K. Yumoto, T. Nagatsuma Jan 2010

Lunar Dependent Equatorial Ionospheric Effects During Sudden Stratosphericwarmings, Bela G. Fejer, M. E. Olson, J. L. Chau, C. Stolle, H. Luhr, L. P. Goncharenko, K. Yumoto, T. Nagatsuma

Bela G. Fejer

[1] We have used plasma drift and magnetic field measurements during the 2001–2009 December solstices to study, for the first time, the longitudinal dependence of equatorial ionospheric electrodynamic perturbations during sudden stratospheric warmings. Jicamarca radar measurements during these events show large dayside downward drift (westward electric field) perturbations followed by large morning upward and afternoon downward drifts that systematically shift to later local times. Ground-based magnetometer measurements in the American, Indian, and Pacific equatorial regions show strongly enhanced electrojet currents in the morning sector and large reversed currents (i.e., counterelectrojets) in the afternoon sector with onsets near new ...


Quiet Variability Of Equatorial E × B Drifts During A Sudden Stratospheric Warning Event, J. L. Chau, Bela G. Fejer, L. P. Goncharenko Mar 2009

Quiet Variability Of Equatorial E × B Drifts During A Sudden Stratospheric Warning Event, J. L. Chau, Bela G. Fejer, L. P. Goncharenko

Bela G. Fejer

[1] We present strong evidence that during the January 2008 minor sudden stratospheric warming (SSW) event, the equatorial vertical E × B drifts exhibit a unique and distinctive daytime pattern. We do not think one event causes the other, however both events might be related through the global effects of planetary waves. The drifts were measured by the Jicamarca Incoherent scatter radar located under the magnetic equator. We have observed an anomalous temporal variation of the vertical E × B drifts during the minor SSW event, showing a semidiurnal variation with very large amplitudes lasting for several days. Large differences in the ...


Climatology Of Early Night Equatorial Spread F Over Jicamarca, N. P. Chapagain, Bela G. Fejer Jan 2009

Climatology Of Early Night Equatorial Spread F Over Jicamarca, N. P. Chapagain, Bela G. Fejer

Bela G. Fejer

[1] We use radar observations from 1996 to 2006 to study the climatology of postsunset equatorial 3-m spread F irregularities over Jicamarca during all seasons. We show that the spread F onset times do not change with solar flux and that their onset heights, which occur near the altitude of the evening F region velocity vortex, increase linearly from about 260 to 400 km from solar minimum to solar maximum. Higher onset heights generally lead to stronger radar echoes. During the equinox, spread F onset occurs near vertical drift evening reversal times, while during the December solstice, they occur near ...


Seasonal And Longitudinal Dependence Of Equatorialdisturbance Vertical Plasma Drifts, Bela G. Fejer, J. W. Jensen, S. Y. Su Oct 2008

Seasonal And Longitudinal Dependence Of Equatorialdisturbance Vertical Plasma Drifts, Bela G. Fejer, J. W. Jensen, S. Y. Su

Bela G. Fejer

[1] We used equatorial measurements from the ROCSAT-1 satellite to determine the seasonal and longitudinal dependent equatorial F region disturbance vertical plasma drifts. Following sudden increases in geomagnetic activity, the prompt penetration vertical drifts are upward during the day and downward at night, and have strong local time dependence at all seasons. The largest prompt penetration drifts near dusk and dawn occur during June solstice. The daytime disturbance dynamo drifts are small at all seasons. They are downward near dusk with largest (smallest) values during equinox (June solstice); the nighttime drifts are upward with the largest magnitudes in the postmidnight ...


Quiet Time Equatorial F Region Vertical Plasma Drift Model Derived From Rocsat-1 Observations, Bela G. Fejer, J. W. Jensen, S. Y. Su May 2008

Quiet Time Equatorial F Region Vertical Plasma Drift Model Derived From Rocsat-1 Observations, Bela G. Fejer, J. W. Jensen, S. Y. Su

Bela G. Fejer

[1] We have used five years of measurements on board the ROCSAT-1 satellite to develop a detailed quiet time global empirical model for equatorial F region vertical plasma drifts. This model describes the local time, seasonal and longitudinal dependence of the vertical drifts for an altitude of 600 km under moderate and high solar flux conditions. The model results are in excellent agreement with measurements from the Jicamarca radar and also from other ground-based and in situ probes. We show that the longitudinal dependence of the daytime and nighttime vertical drifts is much stronger than reported earlier, especially during December ...


Equatorial Ionospheric Electric Fields During The November 2004 Magnetic Storm, Bela G. Fejer, J. W. Jensen, T. Kikuchi, M. A. Abdu, J. L. Chau Oct 2007

Equatorial Ionospheric Electric Fields During The November 2004 Magnetic Storm, Bela G. Fejer, J. W. Jensen, T. Kikuchi, M. A. Abdu, J. L. Chau

Bela G. Fejer

[1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November 7 main phase of the storm, when the southward IMF, the solar wind and reconnection electric fields, and the polar cap potential drops had very large and nearly steady values. This result ...


Evolution Of Equatorial Ionospheric Bubbles During A Large Auroral Electrojet Increase In The Recovery Phase Of A Magnetic Storm, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer, J. Emmert Feb 2006

Evolution Of Equatorial Ionospheric Bubbles During A Large Auroral Electrojet Increase In The Recovery Phase Of A Magnetic Storm, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer, J. Emmert

Bela G. Fejer

[1] We present a model and observations of the evolution of equatorial ionospheric bubbles during a large auroral electrojet (AE) index increase in the recovery phase of a geomagnetic storm. Using a three-dimensional time-dependent numerical simulation model, we find, for the 19–21 October 1998 storm, that the equatorial bubble evolution is different during storm time as compared to quiet time conditions. We have found that the storm time vertical drift in conjunction with reduced off-equatorial E region shorting is the primary mechanism that distinguishes the large AE increase recovery phase storm time evolution from the quiet time case. Comparison ...


Assimilative Modeling Of The Equatorial Ionosphere For Scintillation Forecasting: Modeling With Vertical Drifts, J. M. Retterer, D. T. Decker, W. S. Borer, R. E. Daniell, Bela G. Fejer Nov 2005

Assimilative Modeling Of The Equatorial Ionosphere For Scintillation Forecasting: Modeling With Vertical Drifts, J. M. Retterer, D. T. Decker, W. S. Borer, R. E. Daniell, Bela G. Fejer

Bela G. Fejer

[1] Knowledge of the vertical plasma drift velocity observed by the Jicamarca incoherent radar in seven events is assimilated into a theoretical model for the ambient F region plasma density. Comparisons of the calculated plasma density model and the observed plasma density show that, apart from the signature effects of equatorial plasma bubbles, the ambient model captures much of the detail of the plasma density profiles. Rayleigh-Taylor growth rates calculated with the ambient model show a good correlation with the occurrence of spread F.


Equatorial Counterelectrojetsduring Substorms, T. Kikuchi, K. Hashimoto, T. I. Kitamura, H. Tachihara, Bela G. Fejer Nov 2003

Equatorial Counterelectrojetsduring Substorms, T. Kikuchi, K. Hashimoto, T. I. Kitamura, H. Tachihara, Bela G. Fejer

Bela G. Fejer

[1] Equatorial counterelectrojet (CEJ) events are analyzed in association with changes in the interplanetary magnetic field (IMF), polar cap potential (PCP), and electric field measured in the equatorial ionosphere. In one event on 16 July 1995, the equatorial CEJ was observed at the afternoon dip equator during the recovery phase of the substorm when the IMF turned northward. Rapid decreases in the PCP and in the auroral electrojet occurred simultaneously with the equatorial CEJ, suggesting instantaneous equatorward penetration of the rapid decrease in the electric field associated with the region 1 field-aligned currents (R1 FACs) under the condition of a ...


Three-Dimensional Nonlinear Evolution Ofequatorial Ionospheric Spread-F Bubbles, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer Aug 2003

Three-Dimensional Nonlinear Evolution Ofequatorial Ionospheric Spread-F Bubbles, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer

Bela G. Fejer

[1] Using numerical simulation techniques, we present the first study of the three-dimensional nonlinear evolution of an equatorial spread-F bubble. The background ionosphere used to initialize the bubble evolution is computed using a time-dependent first-principles equatorial plasma fountain model together with a prereversal enhancement vertical drift model. We find that finite parallel conductivity effects slow down both the linear and nonlinear bubble evolution compared to the two-dimensional evolution. In addition we find that bubble-like structures with extremely sharp density gradients can be generated off the equator at equatorial anomaly latitudes in agreement with recent observations.


The Lunar Tide In The Equatorial F Region Vertical Ion Drift Velocity, R. J. Stening, Bela G. Fejer Jan 2001

The Lunar Tide In The Equatorial F Region Vertical Ion Drift Velocity, R. J. Stening, Bela G. Fejer

Bela G. Fejer

Vertical ion drift velocity data from Jicamarca have been analyzed for a lunar semidiurnal tide using a least squares fitting method. Amplitudes of up to 6 m s−1 are obtained with phases in agreement with lunar tidal determinations of other associated physical parameters. Variations between season, solar activity, and day to night are also examined. Generally, amplitudes are larger in the southern summer. Much of the phase variation with season is very similar for solar maximum and minimum years. There is a summer to winter phase change that is most distinct at solar maximum nighttime. A day-to-night phase reversal ...


De-2 Observations Of Morningside And Eveningside Plasma Density Depletions In The Equatorial Ionosphere, M. Palmroth, H. Laakso, Bela G. Fejer, R. F. Pfaff Aug 2000

De-2 Observations Of Morningside And Eveningside Plasma Density Depletions In The Equatorial Ionosphere, M. Palmroth, H. Laakso, Bela G. Fejer, R. F. Pfaff

Bela G. Fejer

The occurrence of equatorial density depletions in the nightside F region ionosphere has been investigated by using observations gathered by the polar-orbiting Dynamics Explorer 2 satellite from August 1981 to February 1983. A variety of electric field/plasma drift patterns were observed within these depletions, including updrafting, downdrafting, bifurcating, converging, subsonic, and supersonic flows. The depletions, 116 events in total, are distributed over two groups: group I (eveningside depletions) consists of the events in the 1900–2300 MLT sector, and group II (morningside depletions) are the events in the 2300–0600 MLT sector. A statistical analysis reveals clear differences in ...


Effects Of The Vertical Plasma Drift Velocity On The Generation And Evolution Of Equatorial Spread F, Bela G. Fejer, L. Scherliess, E. R. De Paula Sep 1999

Effects Of The Vertical Plasma Drift Velocity On The Generation And Evolution Of Equatorial Spread F, Bela G. Fejer, L. Scherliess, E. R. De Paula

Bela G. Fejer

We use radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F. The dependence of these irregularities on season, solar cycle, and magnetic activity can be explained as resulting from the corresponding effects on the evening and nighttime vertical drifts. In the early night sector, the bottomside of the F layer is almost always unstable. The evolution of the unstable layer is controlled by the history of the vertical drift velocity. When the drift velocities are large enough, the ...


Equatorial And Low Latitude Thermospheric Winds: Measured Quiet Time Variations With Season And Solar Flux From 1980 To 1990, M. A. Biondi, S. Y. Sazykin, Bela G. Fejer, J. W. Meriwether, C. G. Fesen Aug 1999

Equatorial And Low Latitude Thermospheric Winds: Measured Quiet Time Variations With Season And Solar Flux From 1980 To 1990, M. A. Biondi, S. Y. Sazykin, Bela G. Fejer, J. W. Meriwether, C. G. Fesen

Bela G. Fejer

Thermospheric winds have been systematically determined at Arequipa, Peru, and Arecibo, Puerto Rico, from Fabry-Perot interferometer measurements of Doppler shifts in the nightglow 630 nm line. The wind databases (1983 – 1990 at Arequipa and 1980 – 1990 at Arecibo) have been edited to eliminate measurements during geomagnetically disturbed conditions, then sorted by season and solar flux level. Following this, they were averaged to obtain the climatological behavior of the nighttime wind variations at the two locations. A new averaging technique, multivariate regression analysis, has been applied to the data, and the results compared to our prior binning averages. The observed wind ...


Radar And Satellite Global Equatorial F-Region Vertical Drift Model, L. Scherliess, Bela G. Fejer Apr 1999

Radar And Satellite Global Equatorial F-Region Vertical Drift Model, L. Scherliess, Bela G. Fejer

Bela G. Fejer

We present the first global empirical model for the quiet time F region equatorial vertical drifts based on combined incoherent scatter radar observations at Jicamarca and Ion Drift Meter observations on board the Atmospheric Explorer E satellite. This analytical model, based on products of cubic-B splines and with nearly conservative electric fields, describes the diurnal and seasonal variations of the equatorial vertical drifts for a continuous range of all longitudes and solar flux values. Our results indicate that during solar minimum, the evening prereversal velocity enhancement exhibits only small longitudinal variations during equinox with amplitudes of about 15–20 m ...


Empirical Models Of Storm-Time Equatorial Zonal Electric Fields, Bela G. Fejer, L. Scherliess Nov 1997

Empirical Models Of Storm-Time Equatorial Zonal Electric Fields, Bela G. Fejer, L. Scherliess

Bela G. Fejer

Ionospheric plasma drifts often show highly complex and variable signatures during geomagnetically active periods due to the effects of different disturbance processes. We describe initially a methodology for the study of storm time dependent ionospheric electric fields. We present empirical models of equatorial disturbance zonal electric fields obtained using extensive F region vertical plasma drift measurements from the Jicamarca Observatory and auroral electrojet indices. These models determine the plasma drift perturbations due to the combined effects of short-lived prompt penetration and longer lasting disturbance dynamo electric fields. We show that the prompt penetration drifts obtained from a high time resolution ...


Incoherent Scatter Radar, Ionosonde,And Satellite Measurements Of Equatorial F Region Vertical Plasma Drifts In The Evening Sector, Bela G. Fejer, E. R. De Paula, L. Scherliess, I. S. Batista Jul 1996

Incoherent Scatter Radar, Ionosonde,And Satellite Measurements Of Equatorial F Region Vertical Plasma Drifts In The Evening Sector, Bela G. Fejer, E. R. De Paula, L. Scherliess, I. S. Batista

Bela G. Fejer

Studies of equatorial F region evening vertical plasma drifts using different measurement techniques have produced conflicting results. We examine the relationship of incoherent scatter radar and ionosonde drift observations over the Peruvian equatorial region, and AE-E satellite drifts for different geophysical conditions. Our data show that there is large day-to-day variability on the ratios of radar and ionosonde drifts, but on the average the measurements from these two techniques are in fair agreement during low and moderate solar flux conditions. For high solar activity, however, the Jicamarca evening drifts during equinox and December solstice are significantly larger than the ionosonde ...


Time Dependent Response Of Equatorial Ionospheric Electric Fieldsto Magnetospheric Disturbances, Bela G. Fejer, L. Scherliess Apr 1995

Time Dependent Response Of Equatorial Ionospheric Electric Fieldsto Magnetospheric Disturbances, Bela G. Fejer, L. Scherliess

Bela G. Fejer

We use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending on the relative contributions of these two components. The prompt electric field responses, with lifetimes of about one hour, are in excellent agreement with results from global convection ...


Global Equatorial Ionosphericvertical Plasma Drifts Measured By The Ae-E Satellite, Bela G. Fejer, E. R. De Paula, R. A. Heelis, W. B. Hanson Jan 1995

Global Equatorial Ionosphericvertical Plasma Drifts Measured By The Ae-E Satellite, Bela G. Fejer, E. R. De Paula, R. A. Heelis, W. B. Hanson

Bela G. Fejer

Ion drift meter observations from the Atmosphere Explorer E satellite during the period of January 1977 to December 1979 are used to study the dependence of equatorial (dip latitudes ≤ 7.5°) F region vertical plasma drifts (east-west electric fields) on solar activity, season, and longitude. The satellite-observed ion drifts show large day-to-day and seasonal variations. Solar cycle effects are most pronounced near the dusk sector with a large increase of the prereversal velocity enhancement from solar minimum to maximum. The diurnal, seasonal, and solar cycle dependence of the longitudinally averaged drifts are consistent with results from the Jicamarca radar except ...


Ion Composition Of The Topside Equatorial Ionosphere During Solar Minimum, S. A. Gonzales, Bela G. Fejer, R. A. Heelis, W. B. Hanson Apr 1992

Ion Composition Of The Topside Equatorial Ionosphere During Solar Minimum, S. A. Gonzales, Bela G. Fejer, R. A. Heelis, W. B. Hanson

Bela G. Fejer

We have used observations from both the Bennett ion mass spectrometer and the retarding potential analyzer on board the Atmosphere Explorer E satellite to study the longitudinally averaged O+, H+, and He+ concentrations from 150 to 1100 km in the equatorial ionosphere during the 1975–1976 solar minimum. Our results suggest that the ion mass spectrometer measurements need to be increased by a factor of 2.15 to agree with the densities from the retarding potential analyzer and with ground-based measurements. The peak H+ concentrations are about 2.5×104 cm−3 during the day and 104 cm−3 at ...


Equatorial Thermospheric Wind Changes During The Solar Cycle: Measurements At Arequipa,Peru From 1983 To 1990, M. A. Biondi, J. W. Meriwether, Bela G. Fejer, S. A. Gonzalesz, D. C. Hallenbeck Sep 1991

Equatorial Thermospheric Wind Changes During The Solar Cycle: Measurements At Arequipa,Peru From 1983 To 1990, M. A. Biondi, J. W. Meriwether, Bela G. Fejer, S. A. Gonzalesz, D. C. Hallenbeck

Bela G. Fejer

Fabry-Perot interferometer measurements of Doppler shifts in the nightglow 630-nm emission line have been used to determine near-equatorial thermospheric wind velocities at Arequipa, Peru, over ∼2/3 of a solar cycle. Monthly-average nocturnal variations in the meridional and zonal wind components were calculated from the nightly data to remove short term (day-to-day) variability, facilitating display of seasonal changes in the wind patterns, as well as any additional changes introduced by the progression of the solar cycle. The measured seasonal variations in the wind patterns are more pronounced than the solar cycle variations and are more readily understandable in terms of ...


Seasonal Variations In Theequatorial Thermospheric Wind Measured At Arequipa, Peru, M. A. Biondi, J. W. Meriwether, Bela G. Fejer, S. A. Gonzalez Jan 1990

Seasonal Variations In Theequatorial Thermospheric Wind Measured At Arequipa, Peru, M. A. Biondi, J. W. Meriwether, Bela G. Fejer, S. A. Gonzalez

Bela G. Fejer

Studies have been carried out at Arequipa, Peru, of the seasonal variations in the thermospheric winds at moderate solar flux levels and low geomagnetic activity. Fabry-Perot interferometer measurements of the Doppler shifts in the 630.0 nm nightglow emission line from March to August 1983 and from April to October 1988 have yielded monthly-average meridional winds that are nearly zero (<50 m/s) and possibly fluctuating in direction through much of the night but develop a southward flow at 50–100 m/s in the early and the late night from May onward. The average zonal winds are eastward throughout the night, reaching peak velocities before local midnight and then decreasing. The peak velocities increase to a maximum around the June solstice. The winds are generally stronger in 1988 than in 1983, even though the solar EUV fluxes are comparable for both years. Comparison of the present results with earlier satellite measurements, as embodied in the Horizontal Wind Model of Hedin et al., reveals generally satisfactory agreement at the equinox and June solstice, except for the June 1988 period. Killeen et al.'s vector spherical harmonic form of the NCAR Thermospheric General Circulation Model, calculated for similar solar flux levels, yields meridional and zonal wind variations which exhibit the same temporal behaviors but generally smaller values than the present measurements. The present wind patterns are also compared with those measured during the same years at Arecibo, Puerto Rico; one finds oppositely directed meridional flows and similar, eastward zonal flows at the two locations, as expected from a consideration of solar EUV heating as the principal driving force.


Equatorial F-Regionvertical Plasma Drifts During Solar Maxima, Bela G. Fejer, E. R. De Paula, I. S. Batista, E. Bonelli, R. F. Woodman Sep 1989

Equatorial F-Regionvertical Plasma Drifts During Solar Maxima, Bela G. Fejer, E. R. De Paula, I. S. Batista, E. Bonelli, R. F. Woodman

Bela G. Fejer

Incoherent scatter radar measurements at Jicamarca are used to study the effects of large solar fluxes and magnetic activity on the F region vertical plasma drifts. The average drifts from the two last solar maxima are almost identical except in the late afternoon-early evening sector where their variations with solar flux and magnetic activity are strongly season dependent. The average evening winter (May-August) drifts appear to remain almost constant after a certain solar flux level is reached but increase with magnetic activity. The equinoctial evening drifts increase systematically with solar-flux but decrease with magnetic activity. Very large prereversal enhancement velocities ...


Electric Field And Plasmadensity Measurements In The Strongly-Driven Daytime Equatorial Electrojet: 1. The Unstablelayer And Gradient Drift Waves, R. F. Pfaff, M. C. Kelley, E. Kudeki, Bela G. Fejer, K. D. Baker Dec 1987

Electric Field And Plasmadensity Measurements In The Strongly-Driven Daytime Equatorial Electrojet: 1. The Unstablelayer And Gradient Drift Waves, R. F. Pfaff, M. C. Kelley, E. Kudeki, Bela G. Fejer, K. D. Baker

Bela G. Fejer

Electric field and plasma density instrumentation on board a sounding rocket launched from Punta Lobos, Peru, detected intense electrostatic waves indicative of plasma instabilities in the daytime equatorial electrojet. Simultaneous measurements taken by the Jicamarca radar showed strong 3-m type 1 electrojet echoes as well as evidence of kilometer scale horizontally propagating waves. The in situ electric field wave spectra displayed three markedly different height regions within the unstable layer: (1) a two-stream region on the topside between 103 and 111 km where the electron current was considered to be strongest, (2) a gradient drift region between 90 and 106 ...


Electric Field And Plasmadensity Measurements In The Strongly-Driven Daytime Equatorial Electrojet: 2. Two-Streamwaves, R. F. Pfaff, M. C. Kelley, E. Kudeki, Bela G. Fejer, K. D. Baker Dec 1987

Electric Field And Plasmadensity Measurements In The Strongly-Driven Daytime Equatorial Electrojet: 2. Two-Streamwaves, R. F. Pfaff, M. C. Kelley, E. Kudeki, Bela G. Fejer, K. D. Baker

Bela G. Fejer

Both primary and secondary two-stream (Farley-Buneman) waves have been detected by in situ electric field and plasma density probes in the strongly driven daytime equatorial electrojet over Peru. Simultaneous Jicamarca radar observations showed strong vertical and oblique 3-m type 1 echoes, also indicative of the two-stream mechanism. The rocket data show the two-stream region on the topside of the unstable layer to be situated between 103 and 111 km where the electron current was the strongest. This region was characterized by broadband plasma oscillations extending past 1 kHz in the rocket frame. Furthermore, above 106.5 km, where the electron ...


The Condor Equatorial Electrojetcampaign: Radar Results, E. Kudeki, Bela G. Fejer, D. T. Farley, C. Hanuise Dec 1987

The Condor Equatorial Electrojetcampaign: Radar Results, E. Kudeki, Bela G. Fejer, D. T. Farley, C. Hanuise

Bela G. Fejer

A review of the experimental and theoretical background to the Condor equatorial electrojet campaign is followed by the presentation and discussion of VHF radar interferometer and HF radar backscatter data taken concurrently with two rocket in situ experiments reported in companion papers (Pfaff et al., this issue (a, b). Both experiments were conducted in strongly driven periods with the on-line radar interferometer displaying signatures of what has been interpreted in earlier radar work (Kudeki et al., 1982) as kilometer scale gradient drift waves. Low-frequency density fluctuations detected by in situ rocket sensors confirm the earlier interpretation. VHF radar/rocket data ...


On The Height Variation Of The Equatorial F-Region Vertical Plasmadrifts, J. E. Pingree, Bela G. Fejer May 1987

On The Height Variation Of The Equatorial F-Region Vertical Plasmadrifts, J. E. Pingree, Bela G. Fejer

Bela G. Fejer

We have used improved incoherent scatter radar measurements at the Jicamarca Radio Observatory to study the height variation of the F region vertical plasma drift velocity (driven by the zonal electric field) during moderately quiet conditions. Preliminary results indicate a nearly linear change of the vertical drift velocity with altitude between 200 and 700 km, but with considerable day-to-day variations in the value of the slope. On the average, the velocity gradients are positive in the late night and morning periods and negative during the afternoon and evening hours. Simultaneous vertical and zonal drift measurements confirm that the measured height ...