Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Concentric Double Hollow Grid Cathode Discharges, C. T. Teodorescu-Soare, S. A. Irimiciuc, C. Ionita, D. G. Dimitriu, B. Hodoroaba, T. O'Hara, O. Vasilovici, L. Amarandi, R. W. Schrittwieser Jan 2019

Concentric Double Hollow Grid Cathode Discharges, C. T. Teodorescu-Soare, S. A. Irimiciuc, C. Ionita, D. G. Dimitriu, B. Hodoroaba, T. O'Hara, O. Vasilovici, L. Amarandi, R. W. Schrittwieser

Articles

A new cathode system, consisting of two concentric spherical hollow grids with two aligned orifices, is investigated by space-resolved Langmuir probe measurements and non-linear dynamics analysis. Negative biases of this spherical hollow grids arrangement lead to the formation of two complex space charge structures in the regions of the orifices. The overall dynamics of the current-voltage characteristic (I–V characteristic) of each discharge is characterized by strong oscillatory behaviour with various waveforms correlated with jumps in the static I–V characteristics. Space-resolved measurements through the two aligned orifices of the two grids show a peak increase of the electron temperature and particle …


Characterization Of Laser-Generated Aluminum Plasma Using Ion Time-Of-Flight And Optical Emission Spectroscopy, Md. Haider A. Shaim, Hani E. Elsayed-Ali Nov 2017

Characterization Of Laser-Generated Aluminum Plasma Using Ion Time-Of-Flight And Optical Emission Spectroscopy, Md. Haider A. Shaim, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Laser plasma generated by ablation of an Al target in vacuum is characterized by ion time-of-flight combined with optical emission spectroscopy. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ ∼ 7 ns, and fluence F ≤ 38 J/cm2) is used to ablate the Al target. Ion yield and energy distribution of each charge state are measured. Ions are accelerated according to their charge state by the double-layer potential developed at the plasma-vacuum interface. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. Optical emission spectroscopy of the Al plasma gives significantly lower plasma temperature …


Auroral Ion Outflow: Low Altitude Energization, Kristina A. Lynch, J. L. Semeter, M. Zettergren, P. Kintner, R. Arnoldy, E. Klatt, J. Labelle, R. G. Michell Oct 2007

Auroral Ion Outflow: Low Altitude Energization, Kristina A. Lynch, J. L. Semeter, M. Zettergren, P. Kintner, R. Arnoldy, E. Klatt, J. Labelle, R. G. Michell

Dartmouth Scholarship

The SIERRA nightside auroral sounding rocket made observations of the origins of ion upflow, at topside F-region altitudes (below 700 km), comparatively large topside plasma densities (above 20 000/cc), and low energies (10 eV). Upflowing ions with bulk velocities up to 2 km/s are seen in conjunction with the poleward edge of a nightside substorm arc. The upflow is limited within the poleward edge to a region (a) of northward convection, (b) where Alfvenic ´ and Pedersen conductivities are well-matched, leading to good ionospheric transmission of Alfvenic power, and (c) of ´ soft electron precipitation (below 100 eV). Models of …


Time-Resolved Electron Temperature Measurement In A Highly-Excited Gold Target Usingfemtosecond Thermionic Emission, W. Y. Wang, D. Mark Riffe, Y. S. Lee, M. C. Downer Sep 1994

Time-Resolved Electron Temperature Measurement In A Highly-Excited Gold Target Usingfemtosecond Thermionic Emission, W. Y. Wang, D. Mark Riffe, Y. S. Lee, M. C. Downer

All Physics Faculty Publications

We report direct measurement of hot-electron temperatures and relaxation dynamics for peak electron temperatures between 3400 and 11 000 K utilizing two-pulse-correlation femtosecond (fs) thermionic emission. The fast relaxation times (<1.5 ps) are described by extending RT characterizations of the thermal conductivity, electron-phonon coupling, and electronic specific heat to these high electron temperatures.


Subpicosecond Thomson Scattering Measurements Of Optically Ionized Helium Plasmas, T. E. Glover, Thomas D. Donnelly, E. A. Lipman, A. Sullivan, R. W. Falcone Jul 1994

Subpicosecond Thomson Scattering Measurements Of Optically Ionized Helium Plasmas, T. E. Glover, Thomas D. Donnelly, E. A. Lipman, A. Sullivan, R. W. Falcone

All HMC Faculty Publications and Research

We present the first subpicosecond time-resolved temperature measurements of plasmas produced by high-intensity optical ionization. Thomson scattering is used to measure electron and ion temperatures of helium plasmas created by 125 fs, 800 nm laser pulses focused to an intensity of 2 × 1017 W/cm2. We find that the electron temperature is accurately predicted by a tunneling ionization model. The measured ion temperature is consistent with direct heating by the laser pulse.


Theoretical Study Of The Effect Of Ionospheric Return Currents On The Electron Temperature, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline Jan 1987

Theoretical Study Of The Effect Of Ionospheric Return Currents On The Electron Temperature, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline

All Physics Faculty Publications

An electron heat flow can occur in a partially ionized plasma in response to either an electron temperature gradient (thermal conduction) or an electron current (thermoelectric heat flow). The former process has been extensively studied, while the latter process has received relatively little attention. Therefore a time-dependent three-dimensional model of the high-latitude ionosphere was used to study the effect of field-aligned ionospheric return currents on auroral electron temperatures for different seasonal and solar cycle conditions as well as for different upper boundary heat fluxes. The results of this study lead to the following conclusions: (1) The average, large-scale, return current …


Theoretical Study Of The Electron Temperature In The High-Latitude Ionosphere For Solar Maximum And Winter Conditions, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline Jan 1986

Theoretical Study Of The Electron Temperature In The High-Latitude Ionosphere For Solar Maximum And Winter Conditions, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline

All Physics Faculty Publications

The electron temperature (Te) variation in the high-latitude ionosphere at altitudes between 120 and 800 km has been modeled for solar maximum, winter solstice, and strong magnetic activity conditions. The calculated electron temperatures are consistent with the plasma densities and ion temperatures computed from a time-dependent ionospheric model. Heating rates for both solar EUV and auroral precipitation were included. In general, the predicted UT variation of the electron temperature that results from the displacement between the magnetic and geographic poles is only a few hundred degrees. However, in sunlit trough regions, Te hot spots develop, and …