Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Density functional theory

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 76

Full-Text Articles in Physics

Dft-Based Study Of Electric Field Effect On The Polarizability Of Three Ringed Nematic Liquid Crystal Molecules, Pranav Upadhyay, Mirtunjai Mishra, Ankur Trivedi, Jitendra Kumar, Asheesh Kumar, Devesh Kumar Dec 2020

Dft-Based Study Of Electric Field Effect On The Polarizability Of Three Ringed Nematic Liquid Crystal Molecules, Pranav Upadhyay, Mirtunjai Mishra, Ankur Trivedi, Jitendra Kumar, Asheesh Kumar, Devesh Kumar

Makara Journal of Science

Owing to its successful application to complex molecular systems, computational density functional theory (DFT) has been used to study the effect of an electric field on the molecular polarizability and HOMO–LUMO gap of 1-phenyl-4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}benzene (1) and its fluoro-, chloro-, and cyano- derivatives, namely, 1-fluoro-4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzene (2), 1-chloro-4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzene (3), and 4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzonitrile (4). These molecules belong to the family of nematic liquid crystals with three rings: two benzene and one cyclohexane. Furthermore ...


Substitutional And Interstitial Doping In Laco5 System For The Development Of Hard Magnetic Properties: A First Principles Study, Huseyin Ucar, Renu Choudhary, Durga Paudyal Sep 2020

Substitutional And Interstitial Doping In Laco5 System For The Development Of Hard Magnetic Properties: A First Principles Study, Huseyin Ucar, Renu Choudhary, Durga Paudyal

Ames Laboratory Accepted Manuscripts

We investigate here the changes in the electronic structure at the transition metal sites of the RE-TM5 structure (RE = Rare Earth, TM = Transition Metal) while doping the interstitial sites with nitrogen. LaCo5 compound is taken as the baseline compound owing to its critically needed intrinsic magnetic properties such as magneto-crystalline anisotropy energy (MAE) of ≈5 meV/fu [1] due to the contributions from the cobalt network. In addition, because of the lack of 4f electrons in lanthanum, complications originating from the treatment of the 4f localized electrons are absent in this compound; making it an ideal reference material to all ...


Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier May 2020

Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier

Seton Hall University Dissertations and Theses (ETDs)

Dogan et al.[1], investigated the causes of ferroelectricity in doped hafnia using ab initio methods. Similarly, we investigated the stability of Al doped hafnia using quantum mechanical methods.

There are many different phases of Hafnia: monoclinic, tetragonal, cubic and orthorhombic. Starting with the monoclinic phase of Hafnia, Hafnia undergoes phase transitions which result in different space groups. The temperature at which the tetragonal phase is induced is 2000 K and cubic phase is induced at 2900 K[1]. Different dielectric constants vary from phase to phase. The average dielectric constants are highest for the cubic and tetragonal phases. In ...


Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero Jan 2020

Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero

Open Access Theses & Dissertations

The Hohenberg-Kohn-Sham (HKS) density functional theory (DFT) is widely used to compute electronic structures of atoms, molecules, and solids. It is an exact theory in which ground state electron density plays the role of basic variable, same as the wavefunction does in quantum mechanics. The total ground state energy is a functional of electron density. The practical application of HKS DFT require approximation to the exchange-correlation energy functional. Many density functional approximations (DFAs) with various degree of sophistication and complexities have been developed. Depending on the complexity, these functionals include electron density, density gradients, density Laplacian, kinetic energy densities, Hartree-Fock ...


Fifth-Degree Elastic Potential For Predictive Stress-Strain Relations And Elastic Instabilities Under Large Strain And Complex Loading In Si, Hao Chen, Nikolai A. Zarkevich, Valery I. Levitas, Duane D. Johnson, Xiancheng Zhang Jan 2020

Fifth-Degree Elastic Potential For Predictive Stress-Strain Relations And Elastic Instabilities Under Large Strain And Complex Loading In Si, Hao Chen, Nikolai A. Zarkevich, Valery I. Levitas, Duane D. Johnson, Xiancheng Zhang

Aerospace Engineering Publications

Materials under complex loading develop large strains and often transition via an elastic instability, as observed in both simple and complex systems. Here, we present Si I under large strain in terms of Lagrangian strain by an 5th-order elastic potential found by minimizing error relative to density functional theory (DFT) results. The Cauchy stress-Lagrangian strain curves for arbitrary complex loadings are in excellent correspondence with DFT results, including elastic instability driving Si I→II phase transformation (PT) and the shear instabilities. PT conditions for Si I→II under action of cubic axial stresses are linear in Cauchy stresses in agreement ...


Fabricating Fe Nanocrystals Via Encapsulation At The Graphite Surface, Ana Lii-Rosales, Yong Han, King C. Lai, Dapeng Jing, Michael C. Tringides, James W. Evans, Patricia A. Thiel Nov 2019

Fabricating Fe Nanocrystals Via Encapsulation At The Graphite Surface, Ana Lii-Rosales, Yong Han, King C. Lai, Dapeng Jing, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

In this paper, the authors describe the conditions under which Fe forms encapsulated nanocrystals beneath the surface of graphite, and they characterize these islands (graphite + Fe) thoroughly. The authors use the experimental techniques of scanning tunneling microscopy (STM) plus x-ray photoelectron spectroscopy (XPS) and the computational technique of density functional theory (DFT). Necessary conditions for encapsulation are preexisting ion-induced defects in the graphite substrate and elevated deposition temperature of 875–900 K. Evidence of encapsulation consists of atomically resolved STM images of a carbon lattice, both on top of the islands and on the sloping sides. The nature of the ...


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and ...


Intersublattice Magnetocrystalline Anisotropy Using A Realistic Tight-Binding Method Based On Maximally Localized Wannier Functions, Liqin Ke Feb 2019

Intersublattice Magnetocrystalline Anisotropy Using A Realistic Tight-Binding Method Based On Maximally Localized Wannier Functions, Liqin Ke

Ames Laboratory Accepted Manuscripts

Using a realistic tight-binding Hamiltonian based on maximally localized Wannier functions, we investigate the two-ion magnetocrystalline anisotropy energy (MAE) in L10 transition metal compounds. MAE contributions from throughout the Brillouin zone are obtained using magnetic force theorem calculations with and without perturbation theory. The results from both methods agree with each other, and both reflect features of the Fermi surface. The intrasublattice and intersublattice contributions to MAE are evaluated using a Green's function method. We find that the sign of the intersublattice contribution varies among compounds, and that its amplitude may be significant, suggesting MAE can not ...


Application Of Global Search Methods To Materials Prediction And Design, Adam J. Payne Jan 2019

Application Of Global Search Methods To Materials Prediction And Design, Adam J. Payne

Graduate Theses, Dissertations, and Problem Reports

Due to increased availability and power of computational resources over the past few decades, prediction and design of novel materials using computational methods has become feasible. Simulation of material systems has become vital to the further realization of novel material systems. In order to ascertain physical properties, accurate determination and identification of stable crystalline structures is necessary. Additionally, further identification of novel properties, such as magnetic moments or orbital occupation, is necessary to further realize this goal. Global search methods provide a path to accurate prediction of these properties. In this dissertation, the Firefly algorithm and minima hopping methods are ...


Full Correlation In A Multiconfigurational Study Of Bimetallic Clusters : Restricted Active Space Pair-Density Functional Theory Study Of [2fe-2s] Systems, Samuel J. Stoneburner, Davide Presti, Donald G. Truhlar, Laura Gagliardi Jan 2019

Full Correlation In A Multiconfigurational Study Of Bimetallic Clusters : Restricted Active Space Pair-Density Functional Theory Study Of [2fe-2s] Systems, Samuel J. Stoneburner, Davide Presti, Donald G. Truhlar, Laura Gagliardi

Educator Scholarship

Iron-sulfur clusters play a variety of important roles in protein chemistry, and understanding the energetics of their spin ladders is an important part of understanding these roles. Computational modeling can offer considerable insight into such problems; however, calculations performed thus far on systems with multiple transition metals have typically either been restricted to a single-configuration representation of the density, as in Kohn-Sham theory, or been limited to correlating excitations only within an active space, as in active-space self-consistent field methods. For greater reliability, a calculation should include full correlation, i.e., not only correlation internal to the active space but ...


Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis, Samuel J. Stoneburner, Carlo Alberto Gaggioli, Christopher J. Cramer, Laura Gagliardi Jan 2019

Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis, Samuel J. Stoneburner, Carlo Alberto Gaggioli, Christopher J. Cramer, Laura Gagliardi

Educator Scholarship

Catalytic processes are crucially important for many practical chemical applications. Heterogeneous catalysts are especially appealing because of their high stability and the relative ease with which they may be recovered and reused. Computational modeling can play an important role in the design of more catalytically active materials through the identification of reaction mechanisms and the opportunity to assess hypothetical catalysts in silico prior to experimental verification. Kohn-Sham density functional theory (KS-DFT) is the most used method in computational catalysis because it is affordable and it gives results of reasonable accuracy in many instances. Furthermore, it can be employed in a ...


Mass-Analyzed Threshold Ionization Of Lanthanide Imide Lnnh (Ln = La And Ce) Radicals From N–H Bond Activation Of Ammonia, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang Dec 2018

Mass-Analyzed Threshold Ionization Of Lanthanide Imide Lnnh (Ln = La And Ce) Radicals From N–H Bond Activation Of Ammonia, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang

Chemistry Faculty Publications

Ln (Ln = La and Ce) atom reactions with ammonia are carried out in a pulsed laser vaporization supersonic molecular beam source. Lanthanide-containing species are observed with time-of-flight mass spectrometry, and LnNH molecules are characterized by mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. The theoretical calculations include density functional theory for both Ln species and a scalar relativity correction, electron correlation, and spin-orbit coupling for the Ce species. The MATI spectrum of LaNH exhibits a single vibronic band system with a strong origin band and two weak vibronic progressions, whereas the spectrum of CeNH displays two band systems separated ...


Defect-Assisted Tunneling Electroresistance In Ferroelectric Tunnel Junctions, Konstantin Klyukin, L. L. Tao, Evgeny Y. Tsymbal, Vitaly Alexandrov Aug 2018

Defect-Assisted Tunneling Electroresistance In Ferroelectric Tunnel Junctions, Konstantin Klyukin, L. L. Tao, Evgeny Y. Tsymbal, Vitaly Alexandrov

Evgeny Tsymbal Publications

Recent experimental results have demonstrated ferroelectricity in thin films of SrTiO3 induced by antisite TiSr defects. This opens a possibility to use SrTiO3 as a barrier layer in ferroelectric tunnel junctions (FTJs)—emerging electronic devices promising for applications in nanoelectronics. Here using density functional theory combined with quantum-transport calculations applied to a prototypical Pt/SrTiO3/Pt FTJ, we demonstrate that the localized in-gap energy states produced by the antisite TiSr defects are responsible for the enhanced electron tunneling conductance which can be controlled by ferroelectric polarization. Our tight-binding modeling, which takes into account multiple defects ...


Effects Of B And C Doping On Tunneling Magnetoresistance In Cofe/Mgo Magnetic Tunnel Junctions, Andy Paul Chen, John D. Burton, Evgeny Y. Tsymbal, Yuan Ping Feng, Jingsheng Chen Jul 2018

Effects Of B And C Doping On Tunneling Magnetoresistance In Cofe/Mgo Magnetic Tunnel Junctions, Andy Paul Chen, John D. Burton, Evgeny Y. Tsymbal, Yuan Ping Feng, Jingsheng Chen

Evgeny Tsymbal Publications

Using density-functional theory calculations, we investigate the dominant defects formed by boron (B) and carbon (C) impurities in a CoFe/MgO/CoFe magnetic tunnel junction (MTJ) and their influence on conductivity and tunneling magnetoresistance (TMR). We find that, in the O-poor conditions relevant to experiment, B forms the substitutional defect BCo and C forms the interstitial site Ci at the CoFe/MgO interface. The C-doped MTJ is predicted to have a significantly higher TMR than the B-doped MTJ. This is due to interface state densities associated with the majority spin Δ1-symmetry bands being more heavily suppressed ...


Dynamic Effects In Electron Momentum Spectroscopy Of Sulfur Hexafluoride, Xing Wang, Shenyue Xu, Chuangang Ning, O. Al-Hagan, Pengfei Hu, Yongtao Zhao, Zhongfen Xu, Jingkang Deng, Enliang Wang, Xueguang Ren, Alexander Dorn, Don H. Madison Jun 2018

Dynamic Effects In Electron Momentum Spectroscopy Of Sulfur Hexafluoride, Xing Wang, Shenyue Xu, Chuangang Ning, O. Al-Hagan, Pengfei Hu, Yongtao Zhao, Zhongfen Xu, Jingkang Deng, Enliang Wang, Xueguang Ren, Alexander Dorn, Don H. Madison

Physics Faculty Research & Creative Works

Electron momentum spectroscopy (EMS) results are presented for the sulfur hexafluoride (SF6) molecule using a high-resolution binary (e, 2e) spectrometer at incident energies (Ei) of 600, 1200, and 2400 eV plus the binding energy. The valence orbital momentum profiles were measured with a binding energy resolution of 0.68 eV and angular resolutions of Δθ = ±0.6⁰, ΔΦ = ±0.85⁰. Whereas the two higher incident energies are in the range where normally EMS measurements do not exhibit an impact-energy dependence, the current experimental data display a dynamic dependence on the impact energies. The measured momentum profiles are compared with predictions ...


Theoretical Prediction Of Crystallization Kinetics Of A Supercooled Lennard-Jones Fluid, K. G. S. H. Gunawardana, Xueyu Song May 2018

Theoretical Prediction Of Crystallization Kinetics Of A Supercooled Lennard-Jones Fluid, K. G. S. H. Gunawardana, Xueyu Song

Chemistry Publications

The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory ...


The Crystal Facet-Dependent Electrochemical Performance Of Tio2 Nanocrystals For Heavy Metal Detection: Theoretical Prediction And Experimental Proof, Jianjun Liao, Fan Yang, Cai-Zhuang Wang, Shiwei Lin May 2018

The Crystal Facet-Dependent Electrochemical Performance Of Tio2 Nanocrystals For Heavy Metal Detection: Theoretical Prediction And Experimental Proof, Jianjun Liao, Fan Yang, Cai-Zhuang Wang, Shiwei Lin

Ames Laboratory Accepted Manuscripts

Tailored design/fabrication of electroanalytical materials with highly-active exposed crystal planes is of great importance for the development of electrochemical sensing. In this work, combining experimental and theoretical efforts, we reported a facile strategy to fabricate TiO2 nanocrystals with tunable electrochemical performance for heavy metal detection. Density functional theory (DFT) calculations indicated that TiO2 (001) facet showed relative larger adsorption energy and lower diffusion energy barrier toward heavy metal ions, which is favorable for obtaining better electrochemical stripping behaviors. Based on this prediction, a series of TiO2 nanocrystals with different ratios of exposed (001) and (101) facets were synthesized. Electrochemical ...


Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni Mar 2018

Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni

Publications and Research

Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field ...


Deformation, Lattice Instability, And Metallization During Solid-Solid Structural Transformations Under General Applied Stress Tensor: Example Of Si I -> Si Ii, Nikolai A. Zarkevich, Hao Chen, Valery I. Levitas, Duane D. Johnson Jan 2018

Deformation, Lattice Instability, And Metallization During Solid-Solid Structural Transformations Under General Applied Stress Tensor: Example Of Si I -> Si Ii, Nikolai A. Zarkevich, Hao Chen, Valery I. Levitas, Duane D. Johnson

Materials Science and Engineering Publications

Density functional theory (DFT) was employed to study the stress-strain behavior, elastic instabilities, and metallization during a solid-solid phase transformation (PT) between semiconducting Si I (cubic A4) and metallic Si II (tetragonal A5 structure) when subjected to a general stress tensor. With normal stresses (σ1, σ2, σ3) acting along ⟨110⟩, ⟨11¯0⟩, and ⟨001⟩, respectively, dictating the simulation cell, we determine combinations of 6 independent stresses that drive a lattice instability for the Si I→Si II PT, and a semiconductor-metal electronic transition. Metallization precedes the structural PT, hence, a stressed Si I can be a metal. Surprisingly, a stress-free ...


Mc-Pdft Can Calculate Singlet-Triplet Splittings Of Organic Diradicals., Samuel J. Stoneburner, Donald G. Truhlar, Laura Gagliardi Jan 2018

Mc-Pdft Can Calculate Singlet-Triplet Splittings Of Organic Diradicals., Samuel J. Stoneburner, Donald G. Truhlar, Laura Gagliardi

Educator Scholarship

The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT) and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the same parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 ...


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts ...


Investigating The Properties Of Superfluid He-4 Through Density Functional Calculations, Matthew Francis Dutra May 2017

Investigating The Properties Of Superfluid He-4 Through Density Functional Calculations, Matthew Francis Dutra

Doctoral Dissertations

We present a study of isotopically pure He-4 systems evaluated using helium density functional theory (He-DFT) with the intent of better understanding their ground state structural and energetic properties, particularly within the scope of singularly-doped helium droplets. We self-consistently solve for the density profiles and chemical potentials for a wide range of pure helium droplet sizes (up to 9500 atoms) via an imaginary time propagation method, and fit the resultant energetic data to a power law formula to be able to extrapolate values for even larger droplets. Subsequent calculations on singularly-doped droplets within the same size range yield accurate binding ...


The Effect Of Pressure And Interstitial Substitution On The Electronic Properties Of Molybdenum Disulfide Mos2, Wadha Khalifa Salem Rashed Alfalasi Apr 2017

The Effect Of Pressure And Interstitial Substitution On The Electronic Properties Of Molybdenum Disulfide Mos2, Wadha Khalifa Salem Rashed Alfalasi

Physics Theses

Molybdenum disulfide has some of graphene’s properties but has an edge over graphene as this new 2D nanomaterial has a band gap in its electronic structure, which is absent in graphene. The purpose of this thesis is to study the electronic properties of the promising Molybdenum Disulfide (MoS2) material in its bulk and monolayer forms by undertaking a systematic theoretical approach. We will mainly study the band gap, the density of states and the electronic charge distribution, which is considered as the most important electronic characteristics of semiconductors.

In this study, the density functional theory (DFT) – implemented in WIEN2k ...


Oscillatory Electrostatic Potential On Graphene Induced By Group Iv Element Decoration, Chunyan Du, Liwei Yu, Xiaojie Liu, Lili Liu, Cai-Zhuang Wang Jan 2017

Oscillatory Electrostatic Potential On Graphene Induced By Group Iv Element Decoration, Chunyan Du, Liwei Yu, Xiaojie Liu, Lili Liu, Cai-Zhuang Wang

Ames Laboratory Accepted Manuscripts

The structures and electronic properties of partial C, Si and Ge decorated graphene were investigated by first-principles calculations. The calculations show that the interaction between graphene and the decoration patches is weak and the semiconductor patches act as agents for weak electron doping without much disturbing graphene electronic π-bands. Redistribution of electrons due to the partial decoration causes the electrostatic potential lower in the decorated graphene areas, thus induced an electric field across the boundary between the decorated and non-decorated domains. Such an alternating electric field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport.


Growth And Characterization Of Baznga, Na Hyun Jo, Qisheng Lin, Udhara S. Kaluarachchi, William R. Meier, Soham Manni, Savannah S. Downing, Anna E. Böhmer, Tai Kong, Yang Sun, Valentin Taufour, Cai-Zhuang Wang, Kai-Ming Ho, Sergey L. Bud’Ko, Paul C. Canfield Jan 2017

Growth And Characterization Of Baznga, Na Hyun Jo, Qisheng Lin, Udhara S. Kaluarachchi, William R. Meier, Soham Manni, Savannah S. Downing, Anna E. Böhmer, Tai Kong, Yang Sun, Valentin Taufour, Cai-Zhuang Wang, Kai-Ming Ho, Sergey L. Bud’Ko, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

We report the growth, structure and characterization of BaZnGa, identifying it as the sole known ternary compound in the Ba–Zn–Ga system. Single crystals of BaZnGa can be grown out of excess Ba–Zn and adopt a tI36 structure type. There are three unique Ba sites and three M = Zn/Ga sites. Using DFT calculations we can argue that whereas one of these three M sites is probably solely occupied by Ga, the other two M sites, most likely, have mixed Zn/Ga occupancy. Temperature-dependent resistivity and magnetization measurements suggest that BaZnGa is a poor metal with no electronic ...


Adsorption Of Dysprosium On The Graphite (0001) Surface: Nucleation And Growth At 300 K, Emma J. Kwolek, Huaping Lei, Ann Lii-Rosales, Mark Wallingford, Yinghui Zhou, Cai-Zhuang Wang, Michael C. Tringides, James W. Evans Dec 2016

Adsorption Of Dysprosium On The Graphite (0001) Surface: Nucleation And Growth At 300 K, Emma J. Kwolek, Huaping Lei, Ann Lii-Rosales, Mark Wallingford, Yinghui Zhou, Cai-Zhuang Wang, Michael C. Tringides, James W. Evans

Physics and Astronomy Publications

We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with ...


Comparison Of S-Adsorption On (111) And (100) Facets Of Cu Nanoclusters, Jeffrey S. Boschen, Jiyoung Lee, Theresa L. Windus, James W. Evans, Patricia A. Thiel, Da-Jiang Liu Oct 2016

Comparison Of S-Adsorption On (111) And (100) Facets Of Cu Nanoclusters, Jeffrey S. Boschen, Jiyoung Lee, Theresa L. Windus, James W. Evans, Patricia A. Thiel, Da-Jiang Liu

Physics and Astronomy Publications

In order to gain insight into the nature of chemical bonding of sulfur atoms on coinage metal surfaces, we compare the adsorption energy and structural parameters for sulfur at four-fold hollow (4fh) sites on (100) facets and at three-fold hollow (3fh) sites on (111) facets of Cu nanoclusters. Consistent results are obtained from localized atomic orbital and plane-wave based density functional theory using the same functionals. PBE and its hybrid counterpart (PBE0 or HSE06) also give similar results. 4fh sites are preferred over 3fh sites with stronger bonding by ∼0.6 eV for nanocluster sizes above ∼280 atoms. However, for ...


Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa Aug 2016

Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa

Electronic Thesis and Dissertation Repository

The Kohn-Sham density functional theory relies on approximating the exchange-correlation energy functional or the corresponding potential. The behavior of the exchange-correlation potential as a function of position in a system can be used to detect and correct deficiencies of the parent functional. The too-fast decay of the potentials derived from common density functionals is a major problem, because it causes inaccurate Rydberg excitation energies and erroneous fractional charges in dissociating molecules. An efficient method to correct the shape of the exchange-correlation potential was proposed by Gaiduk et al. [A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev ...


First Principles Investigations Of Single Dopants In Diamond And Silicon Carbide, Wenhao Hu Aug 2016

First Principles Investigations Of Single Dopants In Diamond And Silicon Carbide, Wenhao Hu

Theses and Dissertations

In the most recent two decades, the development of impurity controls with ultra-high precision in semiconductors motivates people to put more and more attentions on the solotronic devices, whose properties depend on one or a few dopants. One of the most promising applications of solotronic device is the qubit in quantum computing. In the procedure of exploring qubit candidates, the most straightforward challenges we need face include that the qubit must be highly isolated and can be initialized/manipulated efficiently with high fidelities. It has been proved that qubits based on single defects have excellent performances as quits. For instance ...


Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose Jun 2016

Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose

Physics Faculty Publications and Presentations

Magnetism and energetics of intrinsic and extrinsic defects and defect clusters in bulk and surfaces of SnO2 is investigated using first-principles to understand the role of surfaces in inducing magnetism in Zn doped nanoparticles. We find that Sn vacancies induce the largest magnetic moment in bulk and on surfaces. However, they have very large formation energies in bulk as well as on surfaces. Oxygen vacancies on the other hand are much easier to create than VSn, but neutral and VO+2 vacancies do not induce any magnetism in bulk as well as on surfaces. VO+1 ...