Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez Nov 2020

Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

Teleseismic, or distant, earthquakes regularly disrupt the operation of ground–based gravitational wave detectors such as Advanced LIGO. Here, we present EQ mode, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differential motion of the interferometer arms with respect to one another, resulting in a reduction of DARM signal at frequencies below 100 mHz. Our method greatly improved the interferometers' capability to remain operational during earthquakes, with ground velocities up to 3.9 μm s ...


Target Control Of Networked Systems, Isaac S. Klickstein Apr 2020

Target Control Of Networked Systems, Isaac S. Klickstein

Mechanical Engineering ETDs

The control of complex networks is an emerging field yet it has already garnered interest from across the scientific disciplines, from robotics to sociology. It has quickly been noticed that many of the classical techniques from controls engineering, while applicable, are not as illuminating as they were for single systems of relatively small dimension. Instead, properties borrowed from graph theory provide equivalent but more practical conditions to guarantee controllability, reachability, observability, and other typical properties of interest to the controls engineer when dealing with large networked systems. This manuscript covers three topics investigated in detail by the author: (i) the ...


Extrinsic Control Of The Exchange Bias, Christian Binek Mar 2012

Extrinsic Control Of The Exchange Bias, Christian Binek

Christian Binek

A new control mechanism for the exchange bias effect in magnetic heterostructures is proposed. It takes advantage of the magnetoelectric effect which takes place in the antiferromagnetic pinning layer. In contrast with the pioneering AC measurements of the magnetoelectric effect, we investigate the magnetic response of the prototypical magnetoelectric compound Cr2O3 on static electric fields. The linear dependence of the magnetic moment on the applied axial electric field and the temperature dependence of the corresponding slopes αshort parallel are measured by DC SQUID magnetometry. The contribution of the field-induced surface magnetization and its impact on the exchange bias effect is ...


Robust Isothermal Electric Control Of Exchange Bias At Room Temperature, Xi He, Yi Wang, Christian Binek, Peter Dowben Mar 2012

Robust Isothermal Electric Control Of Exchange Bias At Room Temperature, Xi He, Yi Wang, Christian Binek, Peter Dowben

Christian Binek

Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between ...


Electrically Controlled Magnetism, Christian Binek, Xi He, Yi Wang, S. Sahoo Mar 2012

Electrically Controlled Magnetism, Christian Binek, Xi He, Yi Wang, S. Sahoo

Christian Binek

Manipulation of magnetically ordered states by electrical means is a promising approach towards novel spintronics devices. We report on the electric control of surface magnetism in Cr2O3 thin films and uniaxial anisotropy in ferroelectric/ferromagnetic heterostructures, respectively. Artificial magnetoelectricity is realized in a BaTiO3/Fe heterostructure. Here, thermally induced coercivity changes of the Fe hysteresis loop are used to derive the stress imposed by the ferroelectric BaTiO3 substrate on the adjacent Fe film. Electrically induced coercivity changes give rise to a giant magnetoelectric susceptibility in the vicinity of the magnetic coercive field.


Pointer States Via Engineered Dissipation, Kaveh Khodjasteh, Viatcheslav V. V. Dobrovitski, Lorenza Viola Aug 2011

Pointer States Via Engineered Dissipation, Kaveh Khodjasteh, Viatcheslav V. V. Dobrovitski, Lorenza Viola

Dartmouth Scholarship

Pointer states are long-lasting high-fidelity states in open quantum systems. We show how any pure state in a non-Markovian open quantum system can be made to behave as a pointer state by suitably engineering the coupling to the environment via open-loop periodic control. Engineered pointer states are constructed as approximate fixed points of the controlled open-system dynamics, in such a way that they are guaranteed to survive over a long time with a fidelity determined by the relative precision with which the dynamics is engineered. We provide quantitative minimum-fidelity bounds by identifying symmetry and ergodicity conditions that the decoherence-inducing perturbation ...


Coherent-State Transfer Via Highly Mixed Quantum Spin Chains, Paola Cappellaro, Lorenza Viola, Chandrasekhar Ramanathan Mar 2011

Coherent-State Transfer Via Highly Mixed Quantum Spin Chains, Paola Cappellaro, Lorenza Viola, Chandrasekhar Ramanathan

Dartmouth Scholarship

Spin chains have been proposed as quantum wires in many quantum-information processing architectures. Coherent transmission of quantum information in spin chains over short distances is enabled by their internal dynamics, which drives the transport of single-spin excitations in perfectly polarized chains. Given the practical challenge of preparing the chain in a pure state, we propose to use a chain that is initially in the maximally mixed state. We compare the transport properties of pure and mixed-state chains and find similarities that enable the experimental study of pure-state transfer via mixed-state chains. We also demonstrate protocols for the perfect transfer of ...


Robust Isothermal Electric Control Of Exchange Bias At Room Temperature, Xi He, Yi Wang, Christian Binek, Peter A. Dowben Jun 2010

Robust Isothermal Electric Control Of Exchange Bias At Room Temperature, Xi He, Yi Wang, Christian Binek, Peter A. Dowben

Christian Binek Publications

Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between ...


Electrically Controlled Magnetism, Christian Binek, Xi He, Yi Wang, Sarbeswar Sahoo Sep 2008

Electrically Controlled Magnetism, Christian Binek, Xi He, Yi Wang, Sarbeswar Sahoo

Christian Binek Publications

Manipulation of magnetically ordered states by electrical means is a promising approach towards novel spintronics devices. We report on the electric control of surface magnetism in Cr2O3 thin films and uniaxial anisotropy in ferroelectric/ferromagnetic heterostructures, respectively. Artificial magnetoelectricity is realized in a BaTiO3/Fe heterostructure. Here, thermally induced coercivity changes of the Fe hysteresis loop are used to derive the stress imposed by the ferroelectric BaTiO3 substrate on the adjacent Fe film. Electrically induced coercivity changes give rise to a giant magnetoelectric susceptibility in the vicinity of the magnetic coercive field.


Towards A Precision Measurement Of The Casimir Force In A Cylinder-Plane Geometry, M. Brown-Hayes, D. A.R. Dalvit, F. D. Mazzitelli, W. J. Kim, R. Onofrio Nov 2005

Towards A Precision Measurement Of The Casimir Force In A Cylinder-Plane Geometry, M. Brown-Hayes, D. A.R. Dalvit, F. D. Mazzitelli, W. J. Kim, R. Onofrio

Dartmouth Scholarship

We report on a proposal aimed at measuring the Casimir force in the cylinder-plane configuration. The Casimir force is evaluated including corrections due to finite parallelism, conductivity, and temperature. The range of validity of the proximity force approximation is also discussed. An apparatus to test the feasibility of a precision measurement in this configuration has been developed, and we describe both a procedure to control the parallelism and the results of the electrostatic calibration. Finally we discuss the possibility of measuring the thermal contribution to the Casimir force and deviations from the proximity force approximation, both of which are expected ...


Extrinsic Control Of The Exchange Bias, Christian Binek Jan 2004

Extrinsic Control Of The Exchange Bias, Christian Binek

Christian Binek Publications

A new control mechanism for the exchange bias effect in magnetic heterostructures is proposed. It takes advantage of the magnetoelectric effect which takes place in the antiferromagnetic pinning layer. In contrast with the pioneering AC measurements of the magnetoelectric effect, we investigate the magnetic response of the prototypical magnetoelectric compound Cr2O3 on static electric fields. The linear dependence of the magnetic moment on the applied axial electric field and the temperature dependence of the corresponding slopes αshort parallel are measured by DC SQUID magnetometry. The contribution of the field-induced surface magnetization and its impact on the exchange bias effect is ...


Clinical Assessment Of The Quantitative Posturography System (Qps), Jacinta Browne, G. O'Hare, A. Finn, J. Colin Jan 2002

Clinical Assessment Of The Quantitative Posturography System (Qps), Jacinta Browne, G. O'Hare, A. Finn, J. Colin

Articles

The objectives of this study were to evaluate a novel design dynamic force platform the Quantitative Posturography System (QPS). The evaluation consisted of identifying the effects due to ageing and disease of the postural control system and also to examine the relationship between functional performance and postural sway. An AOVA design and Pearson-Product correlation design were used. Seventy healthy subjects, seven subjects with Parkinson’s disease and eight subjects with a history of falls took part in the study. It was found that the QPS was able to identify changes due to both the ageing process and disease on the ...


Calculation Of Electronic Coupling Matrix Elements For Ground And Excited State Electron Transfer Reactions: Comparison Of The Generalized Mulliken–Hush And Block Diagonalization Methods, Robert J. Cave, Marshall D. Newton Jun 1997

Calculation Of Electronic Coupling Matrix Elements For Ground And Excited State Electron Transfer Reactions: Comparison Of The Generalized Mulliken–Hush And Block Diagonalization Methods, Robert J. Cave, Marshall D. Newton

All HMC Faculty Publications and Research

Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken–Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene–Cl atom complex and its contact ion ...