Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 62

Full-Text Articles in Physics

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez May 2015

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez

Raúl Ordóñez

Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function …


Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry Jan 2014

Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry

Ehsan Khatami

We implement a highly efficient strong-coupling expansion for the Green's function of the Hubbard model. In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We compute the finite-temperature Green's function analytically in the momentum and Matsubara frequency space as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at temperatures lower than, or of the …


Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar Jan 2014

Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar

Ehsan Khatami

We study the single-orbital Hubbard model on the 1/5-depleted square-lattice geometry, which arises in such diverse systems as the spin-gap magnetic insulator CaV4O9 and ordered-vacancy iron selenides, presenting new issues regarding the origin of both magnetic ordering and superconductivity in these materials. We find a rich phase diagram that includes a plaquette singlet phase, a dimer singlet phase, a Néel and a block-spin antiferromagnetic phase, and stripe phases. Quantum Monte Carlo simulations show that the dominant pairing correlations at half filling change character from d wave in the plaquette phase to extended s wave upon transition to the Néel phase. …


Finite-Temperature Properties Of Strongly Correlated Fermions In The Honeycomb Lattice, Baoming Tang, Thereza Paiva, Ehsan Khatami, Marchos Rigol Sep 2013

Finite-Temperature Properties Of Strongly Correlated Fermions In The Honeycomb Lattice, Baoming Tang, Thereza Paiva, Ehsan Khatami, Marchos Rigol

Ehsan Khatami

We study finite-temperature properties of strongly interacting fermions in the honeycomb lattice using numerical linked-cluster expansions and determinantal quantum Monte Carlo simulations. We analyze a number of thermodynamic quantities, including the entropy, the specific heat, uniform and staggered spin susceptibilities, short-range spin correlations, and the double occupancy at and away from half filling. We examine the viability of adiabatic cooling by increasing the interaction strength for homogeneous as well as for trapped systems. For the homogeneous case, this process is found to be more efficient at finite doping than at half filling. That, in turn, leads to an efficient adiabatic …


Laminar Flow Of Two Miscible Fluids In A Simple Network, Casey Karst, Brian Storey, John B. Geddes Sep 2013

Laminar Flow Of Two Miscible Fluids In A Simple Network, Casey Karst, Brian Storey, John B. Geddes

Brian Storey

When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow …


Laminar Flow Of Two Miscible Fluids In A Simple Network, Casey Karst, Brian Storey, John Geddes Mar 2013

Laminar Flow Of Two Miscible Fluids In A Simple Network, Casey Karst, Brian Storey, John Geddes

John B. Geddes

When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow …


Fluctuation-Dissipation Theorem In An Isolated System Of Quantum Dipolar Bosons After A Quench, Ehsan Khatami, Guido Pupillo, Mark Srednicki, Marcos Rigol Jan 2013

Fluctuation-Dissipation Theorem In An Isolated System Of Quantum Dipolar Bosons After A Quench, Ehsan Khatami, Guido Pupillo, Mark Srednicki, Marcos Rigol

Ehsan Khatami

We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilibrium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices with dipolar interactions whose strength is changed during the quench. We find indications that fluctuation-dissipation relations hold if the system is nonintegrable after the quench, as well as if it is integrable after the quench if the initial state is an equilibrium state of a nonintegrable Hamiltonian. On the other hand, we find indications that they fail if the system is integrable both before and after quenching.


Workshop Addresses Aviation Community, Jennifer Meehan, Joseph Kunches Aug 2012

Workshop Addresses Aviation Community, Jennifer Meehan, Joseph Kunches

Jennifer (Jinni) Meehan

No abstract provided.


The Second Annual Space Weather Community Operations Workshop: Advancing Operations Into The Next Decade, Jennifer Meehan, Jared Fulgham, Kent Tobiska Jul 2012

The Second Annual Space Weather Community Operations Workshop: Advancing Operations Into The Next Decade, Jennifer Meehan, Jared Fulgham, Kent Tobiska

Jennifer (Jinni) Meehan

No abstract provided.


Incommensurate Spin Fluctuations In High-Transition Temperature Superconductors, Barrett Wells, Young Lee, Marc Kastner, Rebecca Christianson, Robert Birgeneau, Kazuyoshi Yamada, Yasuo Endoh, Gen Shirane Jul 2012

Incommensurate Spin Fluctuations In High-Transition Temperature Superconductors, Barrett Wells, Young Lee, Marc Kastner, Rebecca Christianson, Robert Birgeneau, Kazuyoshi Yamada, Yasuo Endoh, Gen Shirane

Rebecca J. Christianson

Neutron scattering experiments have revealed a fascinating interplay between the hole doping, the spin fluctuations, and the superconductivity of the cuprate superconductors. Recently, electrochemical techniques have been used to produce large single crystals of La2CuO4+ y, which has mobile oxygen dopants. Staging behavior of the excess oxygen has been demonstrated, and the low-energy spin fluctuations in stage 6 La2CuO4+ y have been measured. The spin fluctuations are incommensurate with the lattice and have spatial, energy, and temperature dependencies very much like those in La2− xSrxCuO4, with similar high transition temperature. This establishes the universality of the incommensurate spin fluctuations among …


Structures And Incommensurate Spin Excitations In Excess Oxygen-Doped La2cuo4+Y, Robert Birgeneau, Rebecca Christianson, Yasuo Endoh, Marc Kastner, Young Lee, Gen Shirane, Barrett Wells, Kazuyoshi Yamada Jul 2012

Structures And Incommensurate Spin Excitations In Excess Oxygen-Doped La2cuo4+Y, Robert Birgeneau, Rebecca Christianson, Yasuo Endoh, Marc Kastner, Young Lee, Gen Shirane, Barrett Wells, Kazuyoshi Yamada

Rebecca J. Christianson

Over the past decade, we have studied in detail the low-energy spin fluctuations in :a2−xSrxCuO4 for xbetween 0 and 0.18. Our experiments, as well as those by others, have revealed a fascinating interplay between the hole doping, the static and dynamic spin fluctuations and superconductivity. Recently, using electrochemical techniques, we have learned how to produce large single crystals of La2CuO4+y which are relatively homogenous. In this latter system, the dopants are characterized by annealed rather than quenched disorder. Furthermore, we have demonstrated staging behavior of the excess oxygen analogous to staging in intercalated graphite. We have now succeeded in carrying …


A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonochemistry involves focusing acoustic energy through cavitation bubbles to increase chemical activity. The violent bubble collapses lead to temperatures of several thousand kelvin, which drive chemical reactions. In previous work, we gave a detailed computational model of a single bubble collapse, taking into account phase change, mass diffusion, heat diffusion and chemical reactions. All of these phenomena are important in determining the conditions at collapse. The present work involves development of a much simpler model that includes all the physics relevant to the determination of the reaction products. Comparisons with the more detailed computations are made; the reduced model is …


Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonoluminescence is the production of light from acoustically forced bubbles; sonochemistry is a related chemical processing technique. The two phenomena share a sensitive dependence on the liquid phase. The present work is an investigation of the fate and consequences of water vapour in the interior of strongly forced argon micro–bubbles. Due to the extreme nonlinearity of the volume oscillations, excess water vapour is trapped in the bubble during a rapid inertial collapse. Water vapour is prevented from exiting by relatively slow diffusion and non–equilibrium condensation at the bubble wall. By reducing the compression heating of the mixture and through primarily …


Temperature Distribution In An Oscillatory Flow With A Sinusoidal Wall Temperature, Eduardo Ramos, Brian Storey, Fernando Sierra, Raul Zuniga, Andriy Avramenko Jul 2012

Temperature Distribution In An Oscillatory Flow With A Sinusoidal Wall Temperature, Eduardo Ramos, Brian Storey, Fernando Sierra, Raul Zuniga, Andriy Avramenko

Brian Storey

The temperature field generated by an oscillatory boundary layer flow in the presence of a wall with a sinusoidal temperature distribution is analyzed. A linear perturbation method is used to find closed form analytical solutions for the temperature field when the amplitude of the velocity oscillation is small. The analytical solutions only consider long-time behavior when the temperature fields oscillate with the frequency of the flow. The structure of the equation that governs the temperature correction due to convection is similar to that of diffusive waves with the solution consisting of traveling or standing waves. The temperature distribution is also …


Double Layer In Ionic Liquids: Overscreening Versus Crowding, Martin Z. Bazant, Brian D. Storey, Alexei A. Kornyshev Jul 2012

Double Layer In Ionic Liquids: Overscreening Versus Crowding, Martin Z. Bazant, Brian D. Storey, Alexei A. Kornyshev

Brian Storey

We develop a simple Landau-Ginzburg-type continuum theory of solvent-free ionic liquids and use it to predict the structure of the electrical double layer. The model captures overscreening from short-range correlations, dominant at small voltages, and steric constraints of finite ion sizes, which prevail at large voltages. Increasing the voltage gradually suppresses overscreening in favor of the crowding of counterions in a condensed inner layer near the electrode. This prediction, the ion profiles, and the capacitance-voltage dependence are consistent with recent computer simulations and experiments on room-temperature ionic liquids, using a correlation length of order the ion size.


Mixture Segregation Within Sonoluminescence Bubbles, Brian D. Storey, Andrew J. Szeri Jul 2012

Mixture Segregation Within Sonoluminescence Bubbles, Brian D. Storey, Andrew J. Szeri

Brian Storey

This paper concerns a relaxation of the assumption of uniform mixture composition in the interior of sonoluminescence bubbles. Intense temperature and pressure gradients within the bubble drive relative mass diffusion which overwhelms diffusion driven by concentration gradients. This thermal and pressure diffusion results in a robust compositional inhomogeneity in the bubble which lasts several orders of magnitude longer than the temperature peak or light pulse at the main collapse of the bubble. This effect has important consequences for control of sonoluminescence, gas dynamics, sonochemistry, and the physics of light production.


Nonextensive Statistical Mechanics For Rotating Quasi-Two-Dimensional Turbulence, Sunghwan Jung, Brian Storey, Julien Aubert, Harry Swinney Jul 2012

Nonextensive Statistical Mechanics For Rotating Quasi-Two-Dimensional Turbulence, Sunghwan Jung, Brian Storey, Julien Aubert, Harry Swinney

Brian Storey

We have conducted experiments on an asymmetrically forced quasi-two-dimensional turbulent flow in a rapidly rotating annulus. Assuming conservation of potential enstrophy and energy, we maximize a nonextensive entropy function to obtain the azimuthally averaged vorticity as a function of radial position. The predicted vorticity profile is in good accord with the observations. A nonextensive formalism is appropriate because long-range correlations between small-scale vortices give rise to large coherent structures in the turbulence. We also derive probability distribution functions for the vorticity from both extensive and nonextensive entropies, and we find that the prediction from nonextensive theory is in better accord …


Radiation Dose Distributions In Three Dimensions From Tomographic Optical Density Scanning Of Polymer Gels: Ii. Optical Properties Of The Bang Polymer Gel, Yevgeniya Zastavker, Marek Maryanski, John Gore Jun 2012

Radiation Dose Distributions In Three Dimensions From Tomographic Optical Density Scanning Of Polymer Gels: Ii. Optical Properties Of The Bang Polymer Gel, Yevgeniya Zastavker, Marek Maryanski, John Gore

Yevgeniya V. Zastavker

A newly developed method of radiation dosimetry makes use of the optical properties of polymer gels. The dose-response mechanism relies on the production of light-scattering polymer micro-particles in the gel at each site of radiation absorption. The scattering produces an attenuation of transmitted light intensity that is directly related to the dose and independent of dose rate. For the BANG polymer gel (bis, acrylamide, nitrogen, and gelatin) the shape of the dose-response curve depends on the fraction of the cross-linking monomer in the initial mixture and on the wavelength of light. At 500 nm the attenuation coefficient (μ) increases by …


Self-Assembly Of Helical Ribbons, Yevgeniya V. Zastavker, Neer Asherie, Aleksey Lomakin, Jayanti Pande, Joanne M. Donovan, Joel M. Schnur, George B. Benedek Jun 2012

Self-Assembly Of Helical Ribbons, Yevgeniya V. Zastavker, Neer Asherie, Aleksey Lomakin, Jayanti Pande, Joanne M. Donovan, Joel M. Schnur, George B. Benedek

Yevgeniya V. Zastavker

The self-assembly of helical ribbons is examined in a variety of multicomponent enantiomerically pure systems that contain a bile salt or a nonionic detergent, a phosphatidylcholine or a fatty acid, and a steroid analog of cholesterol. In almost all systems, two different pitch types of helical ribbons are observed: high pitch, with a pitch angle of 54 ± 2°, and low pitch, with a pitch angle of 11 ± 2°. Although the majority of these helices are right-handed, a small proportion of left-handed helices is observed. Additionally, a third type of helical ribbon, with a pitch angle in the range …


Dynamical Signature Of The Mott-Hubbard Transition In Ni(S,Se)(2), Yevgeniya Zastavker, Anke Husmann, Deborah Jin, Thomas Rosenbaum, X Yao, J Honig Jun 2012

Dynamical Signature Of The Mott-Hubbard Transition In Ni(S,Se)(2), Yevgeniya Zastavker, Anke Husmann, Deborah Jin, Thomas Rosenbaum, X Yao, J Honig

Yevgeniya V. Zastavker

The transition metal chalcogenide Ni(S,Se)2 is one of the few highly correlated, Mott-Hubbard systems without a strong first-order structural distortion that normally cuts off the critical behavior at the metal-insulator transition. The zero-temperature (T) transition was tuned with pressure, and significant deviations were found near the quantum critical point from the usual T1/2 behavior of the conductivity characteristic of electron-electron interactions in the presence of disorder. The transport data for pressure and temperature below 1 kelvin could be collapsed onto a universal scaling curve.


Tension-Induced Straightening Transition Of Self-Assembled Helical Ribbons, Yevgeniya V. Zastavker, Brice Smith, George B. Benedek Jun 2012

Tension-Induced Straightening Transition Of Self-Assembled Helical Ribbons, Yevgeniya V. Zastavker, Brice Smith, George B. Benedek

Yevgeniya V. Zastavker

Helical ribbons with pitch angles of either 11° or 54° self-assemble in a wide variety of quaternary surfactant-phospholipid/fatty acid-sterol-water systems. By elastically deforming these helices, we examined their response to uniaxial forces. Under sufficient tension, a low pitch helix reversibly separates into a straight domain with a pitch angle of 90° and a helical domain with a pitch angle of 16.5°. Using a newly developed continuum elastic free energy model, we have shown that this phenomenon can be understood as a first order mechanical phase transition.


Performance Characteristics Of Nanocrystalline Diamond Vacuum Field Emission Transistor Array, S Hsu, W Kang, J Davidson, J Huang, David Kerns May 2012

Performance Characteristics Of Nanocrystalline Diamond Vacuum Field Emission Transistor Array, S Hsu, W Kang, J Davidson, J Huang, David Kerns

David V. Kerns

Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. …


Oxygen Line Mapping Of Sn 1006 With Suzaku, Aya Bamba, Hiroya Yamaguchi, Katsuji Koyama, Junko Hiraga, Stephen Holt, John Hughes, Hideaki Katagiri, Jun Kataoka, Satoru Katsuda, Shunji Kitamoto, Motohide Kokubun, Hironori Matsumoto, Emi Miyata, Koji Mori, Hiroshi Nakajima, Masanobu Ozaki, Robert Petre, Akiko Sekiguchi, Tadayuki Takahashi, Takaaki Tanaka, Yukikatsu Terada, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Yasunobu Uchiyama, Masaru Ueno, Shin Watanabe May 2012

Oxygen Line Mapping Of Sn 1006 With Suzaku, Aya Bamba, Hiroya Yamaguchi, Katsuji Koyama, Junko Hiraga, Stephen Holt, John Hughes, Hideaki Katagiri, Jun Kataoka, Satoru Katsuda, Shunji Kitamoto, Motohide Kokubun, Hironori Matsumoto, Emi Miyata, Koji Mori, Hiroshi Nakajima, Masanobu Ozaki, Robert Petre, Akiko Sekiguchi, Tadayuki Takahashi, Takaaki Tanaka, Yukikatsu Terada, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Yasunobu Uchiyama, Masaru Ueno, Shin Watanabe

Stephen Holt

SN1006 is one of the supernova remnants (SNRs) with relatively low-temperature electrons, considering the young age of just 1000 years. We carried out SN1006 mapping observations with the X-ray Imaging Spectrometers (XIS) and the Hard X-ray Detector (HXD) onboard Suzaku, the fifth Japanese X-ray satellite. Thanks to the excellent spectral resolution of XIS in the soft X-ray band, H-like and He-like oxygen emission lines were clearly detected, and we could make a map of the line intensity, and as well as a flux and the photon index of nonthermal component. We found that these parameters have spatial dependences from region …


Results From An Extremely Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar May 2012

Results From An Extremely Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar

Leda Sox

Rayleigh-Scatter lidar systems effectively use remote sensing techniques to continuously measure atmospheric regions, such as the mesosphere (45-100km) where in situ measurements are rarely possible. The Rayleigh lidar located at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently undergoing upgrades to make it the most sensitive of its kind. Here, the important components of these upgrades and how they will effect the study of a particular atmospheric phenomena, atmospheric gravity waves, will be discussed. We will also summarize what has been done to the system during this year to bring us to the threshold of initial …


Viscosity Measurements On Colloidal Dispersions (Nanofluids) For Heat Transfer Applications, Jessica Townsend, Rebecca J. Christianson, D Venerus, J Buongiorno, M A. Kedzierski, Et Al. Apr 2012

Viscosity Measurements On Colloidal Dispersions (Nanofluids) For Heat Transfer Applications, Jessica Townsend, Rebecca J. Christianson, D Venerus, J Buongiorno, M A. Kedzierski, Et Al.

Rebecca J. Christianson

This article reports viscosity data on a series of colloidal dispersions collected as part of the International Nanofluid Property Benchmark Exercise (INPBE). Data are reported for seven different fluids that include dispersions of metal-oxide nanoparticles in water, and in synthetic oil. These fluids, which are also referred to as nanofluids, are currently being researched for their potential to function as heat transfer fluids. In a recently published paper from the INPBE study, thermal conductivity data from more than 30 laboratories around the world were reported and analyzed. Here, we examine the influence of particle shape and concentration on the viscosity …


Nanofluid Properties And Their Effects On Convective Heat Transfer In An Electronics Cooling Application, Jessica Townsend, Rebecca Christianson Apr 2012

Nanofluid Properties And Their Effects On Convective Heat Transfer In An Electronics Cooling Application, Jessica Townsend, Rebecca Christianson

Rebecca J. Christianson

In the search for new, more effective coolant fluids, nanoparticle suspensions have shown promise due to their enhanced thermal conductivity. However, there is a concomitant increase in the viscosity, requiring an increase in pumping power to achieve the same flow rate.Studies of flow cooling in simple geometries indicate that there is a benefit to using nanofluids, but it is difficult to justify extending these results to the far more complicated geometries. Moreover, with the variability of property measurements found in literature, it is possible to show conflicting results from the same set of flow-cooling data. In this work we present …


Viscosity Measurements On Colloidal Dispersions (Nanofluids) For Heat Transfer Applications, Jessica Townsend, Rebecca J. Christianson, D Venerus, J Buongiorno, M A. Kedzierski, Et Al. Apr 2012

Viscosity Measurements On Colloidal Dispersions (Nanofluids) For Heat Transfer Applications, Jessica Townsend, Rebecca J. Christianson, D Venerus, J Buongiorno, M A. Kedzierski, Et Al.

Jessica Townsend

This article reports viscosity data on a series of colloidal dispersions collected as part of the International Nanofluid Property Benchmark Exercise (INPBE). Data are reported for seven different fluids that include dispersions of metal-oxide nanoparticles in water, and in synthetic oil. These fluids, which are also referred to as nanofluids, are currently being researched for their potential to function as heat transfer fluids. In a recently published paper from the INPBE study, thermal conductivity data from more than 30 laboratories around the world were reported and analyzed. Here, we examine the influence of particle shape and concentration on the viscosity …


Nanofluid Properties And Their Effects On Convective Heat Transfer In An Electronics Cooling Application, Jessica Townsend, Rebecca Christianson Apr 2012

Nanofluid Properties And Their Effects On Convective Heat Transfer In An Electronics Cooling Application, Jessica Townsend, Rebecca Christianson

Jessica Townsend

In the search for new, more effective coolant fluids, nanoparticle suspensions have shown promise due to their enhanced thermal conductivity. However, there is a concomitant increase in the viscosity, requiring an increase in pumping power to achieve the same flow rate.Studies of flow cooling in simple geometries indicate that there is a benefit to using nanofluids, but it is difficult to justify extending these results to the far more complicated geometries. Moreover, with the variability of property measurements found in literature, it is possible to show conflicting results from the same set of flow-cooling data. In this work we present …


Non-Linear Dynamic Intertwining Of Rods With Self-Contact, Christopher Lee, Sachin Goyal, Noel Perkins Apr 2012

Non-Linear Dynamic Intertwining Of Rods With Self-Contact, Christopher Lee, Sachin Goyal, Noel Perkins

Christopher Lee

Twisted marine cables on the sea floor can form highly contorted three-dimensional loops that resemble tangles. Such tangles or ‘hockles’ are topologically equivalent to the plectomenes that form in supercoiled DNA molecules. The dynamic evolution of these intertwined loops is studied herein using a computationalrod model that explicitly accounts for dynamicself-contact. Numerical solutions are presented for an illustrative example of a long rod subjected to increasing twist at one end. The solutions reveal the dynamicevolution of the rod from an initially straight state, through a buckled state in the approximate form of a helix, through the dynamic collapse of this …


Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr Mar 2012

Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr

Brian Storey

We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity—sucrose solution and water. Possible applications include blood flow, microfluidics, and other network flows governed by similar principles.