Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Mass-Analyzed Threshold Ionization Of Lanthanide Imide Lnnh (Ln = La And Ce) Radicals From N–H Bond Activation Of Ammonia, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang Dec 2018

Mass-Analyzed Threshold Ionization Of Lanthanide Imide Lnnh (Ln = La And Ce) Radicals From N–H Bond Activation Of Ammonia, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang

Chemistry Faculty Publications

Ln (Ln = La and Ce) atom reactions with ammonia are carried out in a pulsed laser vaporization supersonic molecular beam source. Lanthanide-containing species are observed with time-of-flight mass spectrometry, and LnNH molecules are characterized by mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. The theoretical calculations include density functional theory for both Ln species and a scalar relativity correction, electron correlation, and spin-orbit coupling for the Ce species. The MATI spectrum of LaNH exhibits a single vibronic band system with a strong origin band and two weak vibronic progressions, whereas the spectrum of CeNH displays two band systems …


Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl Sep 2018

Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl

Physics Faculty Articles

Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the time series of …


Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By C—H And C—C Bond Activation Of 1-Pentene And 2-Pentene, Wenjin Cao, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang Jul 2018

Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By C—H And C—C Bond Activation Of 1-Pentene And 2-Pentene, Wenjin Cao, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reactions with 1-pentene and 2-pentene are carried out in a laser-vaporization molecular beam source. The two reactions yield the same metal-hydrocarbon products from the dehydrogenation and carbon–carbon bond cleavage of the pentene molecules. The dehydrogenated species La(C5H8) is the major product, whereas the carbon–carbon bond cleaved species La(C2H2) and La(C3H4) are the minor ones. La(C10H18) is also observed and is presumably formed by La(C5H8) addition to a second pentene molecule. La(C5H8) and La(C2 …


Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By Association And Carbon-Carbon Bond Cleavage Of Isoprene, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang May 2018

Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By Association And Carbon-Carbon Bond Cleavage Of Isoprene, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2 …


Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le May 2018

Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le

Physics & Astronomy ETDs

A Metallic Magnetic Calorimeter (MMC) is a cryogenic calorimetric particle detector that employs a metallic paramagnetic alloy as the temperature sensor material. MMCs are used in many different applications, but this work will focus on their uses in high energy resolution gamma-ray spectroscopy. This technology is of great interest to the field of Nuclear Forensics and Nuclear Safeguards as a non-destructive assay for isotopic analysis of nuclear samples. The energy resolution of MMCs is an order of magnitude higher than the benchmark High Purity Germanium (HPGe) detectors that are currently used in the field and MMCs are also poised to …


Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson Mar 2018

Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson

Theses and Dissertations

Diode-pumped rare gas lasers (DPRGL) have been in development for their potential to become high energy lasers with excellent beam quality that is typical of gas lasers. DPRGL require metastable densities on the order of 1013 cm-3 at pressures around one atmosphere for efficient operation. Argon 1s5 number densities have been measured in microhollow cathode discharges (MHCD) using tunable diode laser absorption spectroscopy. The MHCD had copper electrodes with gaps of 127 and 254 µm and hole diameters from 100-400 µm. Absorbance was measured at pressures of 37 Torr up to 400 Torr, where absorbance could no longer …


Lanthanum-Mediated Dehydrogenation Of Butenes: Spectroscopy And Formation Of La(C4H6) Isomers, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang Jan 2018

Lanthanum-Mediated Dehydrogenation Of Butenes: Spectroscopy And Formation Of La(C4H6) Isomers, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reactions with 1-butene, 2-butene, and isobutene are carried out in a laser-vaporization molecular beam source. The three reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butenes. The dehydrogenated species La(C4H6) is the major product, which is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectrum of La(C4H6) produced from the La+1-butene reaction exhibits two band systems, whereas the MATI spectra produced from the La+2-butene and isobutene reactions display only a single band system. Each of these …


Detection And Characterization Of The Tin Dihydride (Snh2 And Snd2) Molecule In The Gas Phase, Tony C. Smith, Dennis J. Clouthier Jan 2018

Detection And Characterization Of The Tin Dihydride (Snh2 And Snd2) Molecule In The Gas Phase, Tony C. Smith, Dennis J. Clouthier

Chemistry Faculty Publications

The SnH2 and SnD2 molecules have been detected for the first time in the gas phase by laser-induced fluorescence (LIF) and emission spectroscopic techniques through the Ã1B1–X̃1A1 electronic transition. These reactive species were prepared in a pulsed electric discharge jet using (CH3)4Sn or SnH4/SnD4 precursors diluted in high pressure argon. Transitions to the electronic excited state of the jet-cooled molecules were probed with LIF, and the ground state energy levels were measured from single rovibronic level emission spectra. The LIF spectrum of SnD2 …


Analysis Of The Red And Green Optical Absorption Spectrum Of Gas Phase Ammonia, Nikolai F. Zobov, Phillip A. Coles, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Robert J. Hargreaves, Peter F. Bernath, Jonathan Tennyson, Sergei N. Yurchenko, Oleg L. Polyansky Jan 2018

Analysis Of The Red And Green Optical Absorption Spectrum Of Gas Phase Ammonia, Nikolai F. Zobov, Phillip A. Coles, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Robert J. Hargreaves, Peter F. Bernath, Jonathan Tennyson, Sergei N. Yurchenko, Oleg L. Polyansky

Chemistry & Biochemistry Faculty Publications

Room temperature NH3 absorption spectra recorded at the Kitt Peak National Solar Observatory in 1980 are analyzed. The spectra cover two regions in the visible: 15,200 - 15,700 cm-1 and 17,950 - 18,250 cm-1. These high overtone rotation-vibration spectra are analyzed using both combination differences and variational line lists. Two variational line lists were computed using the TROVE nuclear motion program: one is based on an ab initio potential energy surface (PES) while the other used a semi-empirical PES. Ab initio dipole moment surfaces are used in both cases. 95 energy levels with J = 1 …


Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi Jan 2018

Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi

Honors Undergraduate Theses

A variant of RABBITT pump-probe spectroscopy in which the attosecond pulse train comprises both even and odd harmonics of the fundamental IR probe frequency is explored to measure time-resolved photoelectron emission in systems that exhibit autoionizing states. It is shown that the group delay of both one-photon and two-photon resonant transitions is directly encoded in the energy-resolved photoelectron anisotropy as a function of the pump-probe time-delay. This principle is illustrated for a 1D model with symmetric zero-range potentials that supports both bound states and shape-resonances. The model is studied using both perturbation theory and solving the time-dependent Schodinger equation on …


Temperature And Lifetime Measurements In The Ssx Wind Tunnel, M. Kaur, Kaitlin D. Gelber , '20, A. D. Light, Michael R. Brown Jan 2018

Temperature And Lifetime Measurements In The Ssx Wind Tunnel, M. Kaur, Kaitlin D. Gelber , '20, A. D. Light, Michael R. Brown

Physics & Astronomy Faculty Works

We describe ion and electron temperature measurements in the Swarthmore Spheromak Experiment (SSX) MHD wind tunnel with the goal of understanding limitations on the lifetime of our Taylor-state plasma. A simple model based on the equilibrium eigenvalue and Spitzer resistivity predicted the lifetime satisfactorily during the first phase of the plasma evolution. We measured an average Tₑ along a chord by taking the ratio of the CIII97.7 nm to CIV155 nm line intensities using a vacuum ultraviolet (VUV) monochromator. We also recorded local measurements of Tₑ and nₑ using a double Langmuir probe in order to inform our interpretation of …