Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Mathematics

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 46

Full-Text Articles in Physics

Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre Dec 2017

Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This is a Maple worksheet providing an introduction to the USU Library of Solutions to the Einstein Field Equations. The library is part of the DifferentialGeometry software project and is a collection of symbolic data and metadata describing solutions to the Einstein equations.


Quantum Econometrics: How To Explain Its Quantitative Successes And How The Resulting Formulas Are Related To Scale Invariance, Entropy, Fuzzy, And Copulas, Hung T. Nguyen, Kittawit Autchariyapanitkul, Olga Kosheleva, Vladik Kreinovich, Songsak Sriboonchitta Dec 2017

Quantum Econometrics: How To Explain Its Quantitative Successes And How The Resulting Formulas Are Related To Scale Invariance, Entropy, Fuzzy, And Copulas, Hung T. Nguyen, Kittawit Autchariyapanitkul, Olga Kosheleva, Vladik Kreinovich, Songsak Sriboonchitta

Departmental Technical Reports (CS)

Many aspects of human behavior seem to be well-described by formulas of quantum physics. In this paper, we explain this phenomenon by showing that the corresponding quantum-looking formulas can be derived from the general ideas of scale invariance, fuzziness, and copulas. We also use these ideas to derive a general family of formulas that include non-quantum and quantum probabilities as particular cases -- formulas that may be more adequate for describing human behavior than purely non-quantum or purely quantum ones.


Fractional Order Thermoelastic Deflection In A Thin Circular Plate, J. J. Tripathi, S. D. Warbhe, K. C. Deshmukh, J. Verma Dec 2017

Fractional Order Thermoelastic Deflection In A Thin Circular Plate, J. J. Tripathi, S. D. Warbhe, K. C. Deshmukh, J. Verma

Applications and Applied Mathematics: An International Journal (AAM)

In this work, a quasi-static uncoupled theory of thermoelasticity based on time fractional heat conduction equation is used to model a thin circular plate, whose lower surface is maintained at zero temperature whereas the upper surface is insulated. The edge of the circular plate is fixed and clamped. Integral transform technique is used to derive the analytical solutions in the physi-cal domain. The numerical results for temperature distributions and thermal deflection are com-puted and represented graphically for Copper material.


Thermoelastic Analysis Of A Nonhomogeneous Hollow Cylinder With Internal Heat Generation, V. R. Manthena, N. K. Lamba, G. D. Kedar Dec 2017

Thermoelastic Analysis Of A Nonhomogeneous Hollow Cylinder With Internal Heat Generation, V. R. Manthena, N. K. Lamba, G. D. Kedar

Applications and Applied Mathematics: An International Journal (AAM)

In the present paper, we have determined the heat conduction and thermal stresses of a hollow cylinder with inhomogeneous material properties and internal heat generation. All the material properties except Poisson’s ratio and density are assumed to be given by a simple power law in axial direction. We have obtained the solution of the two dimensional heat conduction equation in the transient state in terms of Bessel’s and trigonometric functions. The influence of inhomogeneity on the thermal and mechanical behavior is examined. Numerical computations are carried out for both homogeneous and nonhomogeneous cylinders and are represented graphically.


Mode-Sum Prescription For Vacuum Polarization In Black Hole Spacetimes In Even Dimensions, Peter Taylor, Cormac Doran Nov 2017

Mode-Sum Prescription For Vacuum Polarization In Black Hole Spacetimes In Even Dimensions, Peter Taylor, Cormac Doran

Articles

We present a mode-sum regularization prescription for computing the vacuum polarization of a scalar field in static spherically symmetric black hole spacetimes in even dimensions. This is the first general and systematic approach to regularized vacuum polarization in higher even dimensions, building upon a previous scheme we developed for odd dimensions. Things are more complicated here since the even-dimensional propagator possesses logarithmic singularities which must be regularized. However, in spite of this complication, the regularization parameters can be computed in closed form in arbitrary even dimensions and for arbitrary metric function f(r). As an explicit example of our method, we …


Electromagnetic Resonant Scattering In Layered Media With Fabrication Errors, Emily Anne Mchenry Nov 2017

Electromagnetic Resonant Scattering In Layered Media With Fabrication Errors, Emily Anne Mchenry

LSU Doctoral Dissertations

In certain layered electromagnetic media, one can construct a waveguide that supports a harmonic electromagnetic field at a frequency that is embedded in the continuous spectrum. When the structure is perturbed, this embedded eigenvalue moves into the complex plane and becomes a “complex resonance” frequency. The real and imaginary parts of this complex frequency have physical meaning. They lie behind anomalous scattering behaviors known collectively as “Fano resonance”, and people are interested in tuning them to specific values in optical devices. The mathematics involves spectral theory and analytic perturbation theory and is well understood [16], at least on a theoretical …


Borges And The Subjective-Idealism In Relativity Theory And Quantum Mechanics, Victor Christianto, Florentin Smarandache Nov 2017

Borges And The Subjective-Idealism In Relativity Theory And Quantum Mechanics, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This paper is intended to be a follow-up to our previous paper with title: "Reinterpreting Tlon, Uqbar, Orbis Tertius: On the antirealism tendency in modern physics." We will give more background for our propositions in the previous paper. Our message here is quite simple: allow us to remind fellow physicists and cosmologists to become more aware of Berkeley-idealism tendency, which can lead us to so many distractions instead of bringing us closer to the truth. We observe that much of the progress of modern physics in the last few decades only makes us as confused as before, but at a …


A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan Nov 2017

A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan

Computer Science and Software Engineering

Fluids are a part of everyday life, yet are one of the hardest elements to properly render in computer graphics. Water is the most obvious entity when thinking of what a fluid simulation can achieve (and it is indeed the focus of this project), but many other aspects of nature, like fog, clouds, and particle effects. Real-time graphics like video games employ many heuristics to approximate these effects, but large-scale renderers aim to simulate these effects as closely as possible.

In this project, I wish to achieve effects of the latter nature. Using the Eulerian technique of discrete grids, I …


Co2 Conversion Over Supported Coni Bimetallic And Conipd Trimetallic Catalyst Via Dry Reforming With Methane, Scott Bamonte Oct 2017

Co2 Conversion Over Supported Coni Bimetallic And Conipd Trimetallic Catalyst Via Dry Reforming With Methane, Scott Bamonte

Post & Beyond

Greenhouse gas emission is a problem for the earth, and is causing warming

of the climate, and acidification of the oceans. The primary objective of

this project is to develop novel cobalt based catalysts, to enhance catalytic

conversion of CO2 by methane into, value added chemicals and fuels. The

heterogeneous Co-based bimetallic and tri metallic catalysts were synthesized

via a wet incipient impregnation method to uniformly coat the metal

salts to the pre-treated support (TiO2, SiO2, and La-ZrO2). The catalyst was

dried in the oven at 80∞ C for two hours before subjected …


Mathematical Modeling Of Inhibitory Effects On Chemically Coupled Neurons, Nathhaniel Harraman, Epaminondas Rosa Oct 2017

Mathematical Modeling Of Inhibitory Effects On Chemically Coupled Neurons, Nathhaniel Harraman, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Temperature Effects On Neuronal Tonic-To-Bursting Transitions, Manuela Burek, Epaminondas Rosa Oct 2017

Temperature Effects On Neuronal Tonic-To-Bursting Transitions, Manuela Burek, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


A Brief History Of Neuroscience, Zachary Mobille, Epaminondas Rosa Oct 2017

A Brief History Of Neuroscience, Zachary Mobille, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


From Zeldovich Approximation To Burgers’ Equation: A Plausible Route To Cellular Automata Adhesion Universe, Victor Christianto, Florentin Smarandache Oct 2017

From Zeldovich Approximation To Burgers’ Equation: A Plausible Route To Cellular Automata Adhesion Universe, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

Some years ago, Hidding et al. suggest that the emergence of intricate and pervasive weblike structure of the Universe on Megaparsec scales can be approximated by a well-known equation from fluid mechanics, the Burgers’ equation. The solution to this equation can be obtained from a geometrical formalism. The resulting Adhesion formalism provides deep insight into the dynamics and topology of the Cosmic Web. It uncovers a direct connection between the conditions in the very early Universe and the complex spatial patterns that emerged out of these under the influence of gravity. In the present paper, we describe a cellular automaton …


Four Possible Ways To Model Rotating Universe, Victor Christianto, Florentin Smarandache Oct 2017

Four Possible Ways To Model Rotating Universe, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

It is known that most existing cosmology models do not include rotation, with few exceptions such as rotating Bianchi and rotating Godel metrics. Therefore in this paper we aim to discuss four possible ways to model rotating universe, including Nurgaliev’s Ermakov-type equation. It is our hope that the new proposed method can be verified with observations, in order to open new possibilities of more realistic nonlinear cosmology models.


Evolution Of Superoscillations For Schrödinger Equation In A Uniform Magnetic Field, Fabrizio Colombo, Jonathan Gantner, Daniele C. Struppa Sep 2017

Evolution Of Superoscillations For Schrödinger Equation In A Uniform Magnetic Field, Fabrizio Colombo, Jonathan Gantner, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Aharonov-Berry superoscillations are band-limited functions that oscillate faster than their fastest Fourier component. Superoscillations appear in several fields of science and technology, such as Aharonov’s weak measurement in quantum mechanics, in optics, and in signal processing. An important issue is the study of the evolution of superoscillations using the Schrödinger equation when the initial datum is a weak value. Some superoscillatory functions are not square integrable, but they are real analytic functions that can be extended to entire holomorphic functions. This fact leads to the study of the continuity of a class of convolution operators acting on suitable spaces of …


Neuronal Correlation Parameter In The Idea Of Thermodynamic Entropy Of An N-Body Gravitationally Bounded System, Ioannis Haranas, Ioannis Gkigkitzis, Ilias S. Kotsireas, Carlos Austerlitz Sep 2017

Neuronal Correlation Parameter In The Idea Of Thermodynamic Entropy Of An N-Body Gravitationally Bounded System, Ioannis Haranas, Ioannis Gkigkitzis, Ilias S. Kotsireas, Carlos Austerlitz

Physics and Computer Science Faculty Publications

Understanding how the brain encodes information and performs computation requires statistical and functional analysis. Given the complexity of the human brain, simple methods that facilitate the interpretation of statistical correlations among different brain regions can be very useful. In this report we introduce a numerical correlation measure that may serve the interpretation of correlational neuronal data, and may assist in the evaluation of different brain states. The description of the dynamical brain system, through a global numerical measure may indicate the presence of an action principle which may facilitate a application of physics principles in the study of the human …


Solving Numerically Ermakov-Type Equation For Newtonian Cosmology Model With Vortex, Victor Christianto, Florentin Smarandache, Yunita Umniyati Aug 2017

Solving Numerically Ermakov-Type Equation For Newtonian Cosmology Model With Vortex, Victor Christianto, Florentin Smarandache, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

It has been known for long time that most of the existing cosmology models have singularity problem. Cosmological singularity has been a consequence of excessive symmetry of flow, such as “Hubble’s law”. More realistic one is suggested, based on Newtonian cosmology model but here we include the vertical-rotational effect of the whole Universe. We review a Riccati-type equation obtained by Nurgaliev, and solve the equation numerically with Mathematica. It is our hope that the new proposed method can be verified with observation data.


It’S Déjà Vu All Over Again: A Classical Interpretation Of Syntropy And Precognitive Interdiction Based On Wheeler-Feynman’S Absorber Theory, Victor Christianto, Florentin Smarandache, Yunita Umniyati Aug 2017

It’S Déjà Vu All Over Again: A Classical Interpretation Of Syntropy And Precognitive Interdiction Based On Wheeler-Feynman’S Absorber Theory, Victor Christianto, Florentin Smarandache, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

It has been known for long time that intuition plays significant role in many professions and human life, including in entrepreneurship, government, and also in detective or law enforcement activities. Even women are known to possess better intuitive feelings or “hunch” compared to men. Despite these examples, such a precognitive interdiction is hardly accepted in established science. In this paper, we discuss briefly the advanced solutions of Maxwell equations, and then make connection between syntropy and precognition from classical perspective. It is our hope that the new proposed method can be verified with experimental data. But we admit that our …


A Finite Difference Method For Off-Fault Plasticity Throughout The Earthquake Cycle, Brittany A. Erickson, Eric M. Dunham, Arash Khosravifar Aug 2017

A Finite Difference Method For Off-Fault Plasticity Throughout The Earthquake Cycle, Brittany A. Erickson, Eric M. Dunham, Arash Khosravifar

Mathematics and Statistics Faculty Publications and Presentations

We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiationdamping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor …


Solution Of Pdes For First-Order Photobleaching Kinetics Using Krylov Subspace Spectral Methods, Somayyeh Sheikholeslami Aug 2017

Solution Of Pdes For First-Order Photobleaching Kinetics Using Krylov Subspace Spectral Methods, Somayyeh Sheikholeslami

Dissertations

We solve the first order reaction-diffusion equations which describe binding-diffusion kinetics using a photobleaching scanning profile of a confocal laser scanning microscope approximated by a Gaussian laser profile. We show how to solve these equations with prebleach steady-state initial conditions using a time-domain method known as a Krylov Subspace Spectral (KSS) method. KSS methods are explicit methods for solving time- dependent variable-coefficient partial differential equations (PDEs). KSS methods are advantageous compared to other methods because of their stability and their superior scalability. These advantages are obtained by applying Gaussian quadrature rules in the spectral domain developed by Golub and Meurant. …


On Syntropy & Precognitive Interdiction Based On Wheeler-Feynman’S Absorber Theory, Florentin Smarandache, Victor Christianto, Yunita Umniyati Aug 2017

On Syntropy & Precognitive Interdiction Based On Wheeler-Feynman’S Absorber Theory, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

It has been known for long time that intuition plays significant role in many professions and human life, including in entrepreneurship, government, and also in detective or law enforcement activities. Women are known to possess better intuitive feelings or “hunch” compared to men. Despite these examples, such a precognitive interdiction is hardly accepted in established science. In this letter, we discuss briefly the advanced solutions of Maxwell equations, and then explore plausible connection between syntropy and precognition.


A Numerical Solution Of Ermakov Equation Corresponding To Diffusion Interpretation Of Wave Mechanics, Victor Christianto, Florentin Smarandache Jul 2017

A Numerical Solution Of Ermakov Equation Corresponding To Diffusion Interpretation Of Wave Mechanics, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

It has been long known that a year after Schrödinger published his equation, Madelung also published a hydrodynamics version of Schrödinger equation. Quantum diffusion is studied via dissipative Madelung hydrodynamics. Initially the wave packet spreads ballistically, than passes for an instant through normal diffusion and later tends asymptotically to a sub‐diffusive law. In this paper we will review two different approaches, including Madelung hydrodynamics and also Bohm potential. Madelung formulation leads to diffusion interpretation, which after a generalization yields to Ermakov equation. Since Ermakov equation cannot be solved analytically, then we try to find out its solution with Mathematica package. …


Mathematical Description And Mechanistic Reasoning: A Pathway Toward Stem Integration, Paul J. Weinberg Jul 2017

Mathematical Description And Mechanistic Reasoning: A Pathway Toward Stem Integration, Paul J. Weinberg

Journal of Pre-College Engineering Education Research (J-PEER)

Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith’s (2007) characterization of mathematical description of scientific phenomena as ‘‘bootstrapping,’’ where negotiating the relationship between target phenomena and represented relations is fundamental to learning. In addition, the development of mathematical representation presents a viable pathway towards STEM integration. In this study, participants responded to an assessment of mechanistic reasoning while cognitive interviews …


Thermal Stress Analysis In A Functionally Graded Hollow Elliptic-Cylinder Subjected To Uniform Temperature Distribution, V. R. Manthena, N. K. Lamba, G. D. Kedar Jun 2017

Thermal Stress Analysis In A Functionally Graded Hollow Elliptic-Cylinder Subjected To Uniform Temperature Distribution, V. R. Manthena, N. K. Lamba, G. D. Kedar

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, an analytical method of a thermoelastic problem for a medium with functionally graded material properties is developed in a theoretical manner for the elliptic-cylindrical coordinate system under the assumption that the material properties except for Poisson’s ratio and density are assumed to vary arbitrarily with the exponential law in the radial direction. An attempt has been made to reconsider the fundamental system of equations for functionally graded solids in a two-dimensional state under thermal and mechanical loads. The general solution of displacement formulation is obtained by the introduction of appropriate transformation and carried out the analysis by …


A Review Of Two Derivations Of Maxwell-Dirac Isomorphism And A Few Plausible Extensions, Victor Christianto, Florentin Smarandache May 2017

A Review Of Two Derivations Of Maxwell-Dirac Isomorphism And A Few Plausible Extensions, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

The problem of the formal connection between electrodynamics and wave mechanics has attracted the attention of a number of authors, especially there are some existing proofs on Maxwell-Dirac isomorphism. Here the author will review two derivations of Maxwell-Dirac isomorphism i.e. by Hans Sallhofer and Volodimir Simulik. A few plausible extensions will be discussed too.


Beurling-Lax Type Theorems In The Complex And Quaternionic Setting, Daniel Alpay, Irene Sabadini May 2017

Beurling-Lax Type Theorems In The Complex And Quaternionic Setting, Daniel Alpay, Irene Sabadini

Mathematics, Physics, and Computer Science Faculty Articles and Research

We give a generalization of the Beurling–Lax theorem both in the complex and quaternionic settings. We consider in the first case functions meromorphic in the right complex half-plane, and functions slice hypermeromorphic in the right quaternionic half-space in the second case. In both settings we also discuss a unified framework, which includes both the disk and the half-plane for the complex case and the open unit ball and the half-space in the quaternionic setting.


Jet-Hadron Correlations Relative To The Event Plane Pb--Pb Collisions At The Lhc In Alice, Joel Anthony Mazer May 2017

Jet-Hadron Correlations Relative To The Event Plane Pb--Pb Collisions At The Lhc In Alice, Joel Anthony Mazer

Doctoral Dissertations

In relativistic heavy ion collisions at the Large Hadron Collider (LHC), a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced. Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. Within the framework of perturbative Quantum Chromodynamics (pQCD), jet production is well understood in pp collisions. We can use jets measured in pp interactions as a baseline reference for comparing to heavy ion collision systems to detect and study jet quenching. The jet quenching mechanism …


Ode To Applied Physics: The Intellectual Pathway Of Differential Equations In Mathematics And Physics Courses: Existing Curriculum And Effective Instructional Strategies, Brandon L. Clark May 2017

Ode To Applied Physics: The Intellectual Pathway Of Differential Equations In Mathematics And Physics Courses: Existing Curriculum And Effective Instructional Strategies, Brandon L. Clark

Honors College

The purpose of this thesis is to develop a relationship between mathematics and physics through differential equations. Beginning with first-order ordinary differential equations, I develop a pathway describing how knowledge of differential equations expands through mathematics and physics disciplines. To accomplish this I interviewed mathematics and physics faculty, inquiring about their utilization of differential equations in their courses or research. Following the interviews I build upon my current knowledge of differential equations in order to reach the varying upper-division differential equation concepts taught in higher-level mathematics and physics courses (e.g., partial differential equations, Bessel equation, Laplace transforms) as gathered from …


Novel Methods For The Time-Dependent Maxwell’S Equations And Their Applications, Sidney Shields May 2017

Novel Methods For The Time-Dependent Maxwell’S Equations And Their Applications, Sidney Shields

UNLV Theses, Dissertations, Professional Papers, and Capstones

This dissertation investigates three different mathematical models based on the time domain Maxwell's equations using three different numerical methods: a Yee scheme using a non-uniform grid, a nodal discontinuous Galerkin (nDG) method, and a newly developed discontinuous Galerkin method named the weak Galerkin (WG) method. The non-uniform Yee scheme is first applied to an electromagnetic metamaterial model. Stability and superconvergence error results are proved for the method, which are then confirmed through numerical results. Additionally, a numerical simulation of backwards wave propagation through a negative-index metamaterial is given using the presented method. Next, the nDG method is used to simulate …


Braille Band: A Refreshable Braille Wristwatch, Rachel Crum, Duane Skaggs Apr 2017

Braille Band: A Refreshable Braille Wristwatch, Rachel Crum, Duane Skaggs

Celebration of Student Scholarship Poster Sessions Archive

No abstract provided.