Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Measurement Of Speed Of Sound Profile Using Laaces Balloon, Zhuang Li, Brett Schaefer, Brian Schaefer, William Dever, Tyler Morgan, Matthew Foltz Oct 2017

Measurement Of Speed Of Sound Profile Using Laaces Balloon, Zhuang Li, Brett Schaefer, Brian Schaefer, William Dever, Tyler Morgan, Matthew Foltz

2017 Academic High Altitude Conference

The goal of this mission is to test the speed of sound at different altitudes and ultimately at a maximum height of 100,000 feet (30 km). In conjunction with this testing, environmental parameters including temperature, pressure, and humidity are measured and used to calculate the speed of sound to compare to the measured results. The team constructed the payload “Dorothy” using polystyrene foam due to its lightweight and thermal isolation property. An ultrasonic sensor with a reflection mirror were installed outside payload box to measure speed of sound. All the sensors were calibrated. Software for the project was developed ...


Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett Aug 2017

Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett

Electronic Theses and Dissertations

As Unmanned Aerial Vehicle (UAV), or “drone” applications expand, new methods for sensing, navigating and avoiding obstacles need to be developed. The project applies an Extended Kalman Filter (EKF) to a simulated quadcopter vehicle though Matlab in order to estimate not only the vehicle state but the world state around the vehicle. The EKF integrates multiple sensor readings from range sensors, IMU sensors, and radiation sensors and combines this information to optimize state estimates. The result is an estimated world map to be used in vehicle navigation and obstacle avoidance.

The simulation handles the physics behind the vehicle flight. As ...


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii ...


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an ...


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Multispectral Identification Array, Zachary D. Eagan Jun 2017

Multispectral Identification Array, Zachary D. Eagan

Computer Engineering

The Multispectral Identification Array is a device for taking full image spectroscopy data via the illumination of a subject with sixty-four unique spectra. The array combines images under the illumination spectra to produce an approximate reflectance graph for every pixel in a scene. Acquisition of an entire spectrum allows the array to differentiate objects based on surface material. Spectral graphs produced are highly approximate and should not be used to determine material properties, however the output is sufficiently consistent to allow differentiation and identification of previously sampled subjects. While not sufficiently advanced for use as a replacement to spectroscopy the ...


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an ...


Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr. May 2017

Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr.

Undergraduate Research

The concept for this research proposal is focused on achieving three main objectives:

1) To understand the logic and design behind the Raspberry Pi (RbP) mini-computer model, including: all hardware components and their functions, the capabilities [and limits] of the RbP, and the circuit engineering for these components.

2) To be able to, using the Python high-level language, duplicate, manipulate, and create RbP projects ranging from basic user-input and response systems to the theories behind more intricate and complicated observatory sensors.

3) Simultaneously, in order to combine a mutual shared interest of History and to blend in work done within ...


Superhero Robotics, Frank Sup, Brian Umberger, Nick Sawyer Jan 2017

Superhero Robotics, Frank Sup, Brian Umberger, Nick Sawyer

Science and Engineering Saturday Seminars

No abstract provided.


Developing A Novel Computational Framework To Predict Protein Interactions, Hot-Spots And Binding Affinities, Erte Xi Jan 2017

Developing A Novel Computational Framework To Predict Protein Interactions, Hot-Spots And Binding Affinities, Erte Xi

Publicly Accessible Penn Dissertations

Protein interactions play an important role in various biological processes, such as cell signaling, drug delivery and treating diseases. Predicting these interactions requires a fundamental understanding of protein-water interactions because every protein binding process involves disrupting the protein-water interactions, and replacing them by direct interactions between the binding proteins. Characterizing the protein-water interactions accurately, however, has proved to be challenging, because these interactions depend on not only the nanoscale topography, but also the precise chemical pattern presented by the protein surface.

My thesis work aims to develop a novel method for characterizing the strength of protein- water interactions and predicting ...