Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Chemistry

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 95

Full-Text Articles in Physics

Assessing And Enhancing Nuclear Safety And Security Culture For Small Facilities That Handle Radioactive Material, Solymosi Máté Dec 2017

Assessing And Enhancing Nuclear Safety And Security Culture For Small Facilities That Handle Radioactive Material, Solymosi Máté

International Journal of Nuclear Security

The use of radioactive sources is expanding all over the world and abreast the necessity of the enhancement of its safe and secure application is increasing too. In the nuclear industry, the safety and security are top priorities since decades. They share the same goal, to protect humans from the negative affect of the ionizing radiation. The human component of them is a significant factor and technical solutions can protect us so far and thus the culture for safety and security become a major focus. On the other hand, there are still some contradiction between recommendations and international guidance of ...


The Future Of Nuclear Security In Moroccan Territory After The Creation Of The New Moroccan Agency Of Nuclear And Radiological Safety And Security: Opportunities And Challenges, Amal Touarsi, Amina Kharchaf Dec 2017

The Future Of Nuclear Security In Moroccan Territory After The Creation Of The New Moroccan Agency Of Nuclear And Radiological Safety And Security: Opportunities And Challenges, Amal Touarsi, Amina Kharchaf

International Journal of Nuclear Security

Nowadays, a security regime for protecting nuclear and radiological material—providing an intelligent national regulatory institution and establishing national security laws—is necessary in order for a state to ensure security of nuclear and radiological materials used within its borders.

This paper focuses on discussing the opportunities and challenges facing the future of nuclear security after the creation of the new Moroccan Agency of Nuclear and Radiological Safety and Security.


A Molecular Debye-Hückel Theory Of Solvation In Polar Fluids: An Extension Of The Born Model, Tiejun Xiao, Xueyu Song Dec 2017

A Molecular Debye-Hückel Theory Of Solvation In Polar Fluids: An Extension Of The Born Model, Tiejun Xiao, Xueyu Song

Ames Laboratory Accepted Manuscripts

A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in ...


Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough Dec 2017

Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough

Doctoral Dissertations

Diamond films are used at the Spallation Neutron Source (SNS) as the primary charge exchange foils (i.e., stripper foils) of the accelerated 1 GeV (Gigaelectron volts) hydride ions. The most common type of film used is a nanocrystalline diamond film, typically 17 mm x 45 mm (millimeter) with an aerial density of 350 μg/cm2 (microgram per square centimeter). The diamond film is deposited on a corrugated silicon substrate using plasma-assisted chemical vapor deposition. After the growth of the diamond film, 30 mm of the silicon substrate is etched away, leaving a freestanding diamond foil with a silicon ...


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin Dec 2017

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis ...


Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Nov 2017

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Jeffrey Hettinger

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was found ...


Solar System Battery Backups For Reactor Coolant Pumps During Electricity Outages Resulting From Natural Disasters, Md. Shamsul Huda Sohel Nov 2017

Solar System Battery Backups For Reactor Coolant Pumps During Electricity Outages Resulting From Natural Disasters, Md. Shamsul Huda Sohel

International Journal of Nuclear Security

In a nuclear power plant, its coolant system is major safety equipment. Coolant system failure causes several accidents in nuclear history. There are so many causes for coolant system failure. One of them is lack of electric power for coolant pumps. In typically NPP there is backup system for power redundancy. In this article, focus on reactor coolant system and its backup power when main grid lines failure. Here discuss about solar backup power for batteries and increases a safety lines for reactor coolant pumps. So, our main goal is providing a battery backup from reliable natural source and ensuring ...


Folding Of Bovine Pancreatic Trypsin Inhibitor (Bpti) Is Faster Using Aromatic Thiols And Their Corresponding Disulfides, Ram Prasad Marahatta Nov 2017

Folding Of Bovine Pancreatic Trypsin Inhibitor (Bpti) Is Faster Using Aromatic Thiols And Their Corresponding Disulfides, Ram Prasad Marahatta

FIU Electronic Theses and Dissertations

Improvement in the in vitro oxidative folding of disulfide-containing proteins, such as extracellular and pharmaceutically important proteins, is required. Traditional folding methods using small molecule aliphatic thiol and disulfide, such as glutathione (GSH) and glutathione disulfide (GSSG) are slow and low yielding. Small molecule aromatic thiols and disulfides show great potentiality because aromatic thiols have low pKa values, close to the thiol pKa of protein disulfide isomerase (PDI), higher nucleophilicity and good leaving group ability. Our studies showed that thiols with a positively charged group, quaternary ammonium salts (QAS), are better than thiols with negatively charged groups such as phosphonic ...


Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni Nov 2017

Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni

Electronic Thesis and Dissertation Repository

This thesis presents a newly developed mechanism and predictive model for the corrosion of Alloy 800. The Fe-Cr-Ni Alloy (Incoloy 800) is mainly used for steam generator (SG) tubing in CANDU and PWR reactors and is a candidate material for the proposed Canadian Supercritical Water Reactor (SCWR) in which it will be exposed to extreme conditions of high radiation flux and large temperature gradients. The influence of gamma radiation and water chemistry conditions on the corrosion behaviour of Alloy 800 are studied in this work. Ionizing radiation creates reducing (•eaq, •H, •O2-) and oxidizing radiolysis (•OH, H2 ...


Table Of Contents Nov 2017

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Electronic, Magnetic, And Magnetocrystalline Anisotropy Properties Of Light Lanthanides, T. A. Hackett, D. J. Baldwin, Durga Paudyal Nov 2017

Electronic, Magnetic, And Magnetocrystalline Anisotropy Properties Of Light Lanthanides, T. A. Hackett, D. J. Baldwin, Durga Paudyal

Ames Laboratory Accepted Manuscripts

Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin ...


Reorientations, Relaxations, Metastabilities, And Multidomains Of Skyrmion Lattices, L. J. Bannenberg, F. Qian, R. M. Dalgliesh, N. Martin, G. Chaboussant, M. Schmidt, Deborah L. Schlagel, Thomas A. Lograsso, Diamond Light Source Ltd., C. Pappas Nov 2017

Reorientations, Relaxations, Metastabilities, And Multidomains Of Skyrmion Lattices, L. J. Bannenberg, F. Qian, R. M. Dalgliesh, N. Martin, G. Chaboussant, M. Schmidt, Deborah L. Schlagel, Thomas A. Lograsso, Diamond Light Source Ltd., C. Pappas

Ames Laboratory Accepted Manuscripts

Magnetic skyrmions are nanosized topologically protected spin textures with particlelike properties. They can form lattices perpendicular to the magnetic field, and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small-angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu2OSeO3 and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history of the sample ...


Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze Oct 2017

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze

Faculty Publications, Chemistry

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminaryorientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at the temperatures close to the critical temperature Тс, the attenuation peak associated with “melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized using solar energy and superfast quenching of the melt, the attenuation peak with the maximum at Т≈200 К was ...


Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. G. Chigvinadze, Juana Vivó Acrivos, S. M. Ashimov, D. D. Gulamova, G. J. Donadze Oct 2017

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. G. Chigvinadze, Juana Vivó Acrivos, S. M. Ashimov, D. D. Gulamova, G. J. Donadze

Juana Vivó Acrivos

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminary
orientation (before cooling) of the samples θ in the measured permanent magnetic field Н ...


High-Statistics Β+/Ec-Decay Study Of 122Xe, B. Jigmeddorj, P. E. Garrett, C. A. Andreoiu, G. C. Ball, T. Bruhn, D. S. Cross, A. B. Garnsworthy, B. Hadinia, M. Moukaddam, J. Park, J. L. Pore, A. J. Radich, M. M. Rajabali, E. T. Rand, U. Rizwan, C. E. Svensson, P. Voss, Z. Wang, J. L. Wood, Steven W. Yates Oct 2017

High-Statistics Β+/Ec-Decay Study Of 122Xe, B. Jigmeddorj, P. E. Garrett, C. A. Andreoiu, G. C. Ball, T. Bruhn, D. S. Cross, A. B. Garnsworthy, B. Hadinia, M. Moukaddam, J. Park, J. L. Pore, A. J. Radich, M. M. Rajabali, E. T. Rand, U. Rizwan, C. E. Svensson, P. Voss, Z. Wang, J. L. Wood, Steven W. Yates

Chemistry Faculty Publications

Low-lying excited states of 122Xe have been studied via the β+/EC decay of 122Cs with the 8π γ-ray spectrometer at the TRIUMF Isotope Separator and Accelerator facility. The data collected have enabled the observation of new in-band transitions in the excited 0+ state bands. In addition, the 2+ members of the second 0+ and third 0+ state bands have been firmly confirmed by angular correlation analysis.


Nucleation And Growth Kinetics For Intercalated Islands During Deposition On Layered Materials With Isolated Point-Like Surface Defects, Yong Han, Ann Lii-Rosales, Y. Zhou, C.-J. Wang, M. Kim, Michael C. Tringides, Cai-Zhuang Wang, Patricia A. Thiel, James W. Evans Oct 2017

Nucleation And Growth Kinetics For Intercalated Islands During Deposition On Layered Materials With Isolated Point-Like Surface Defects, Yong Han, Ann Lii-Rosales, Y. Zhou, C.-J. Wang, M. Kim, Michael C. Tringides, Cai-Zhuang Wang, Patricia A. Thiel, James W. Evans

Ames Laboratory Accepted Manuscripts

Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated point-like defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modeling ...


Combined Measurement Of Directional Raman Scattering And Surface-Plasmon-Polariton Cone From Adsorbates On Smooth Planar Gold Surfaces, Charles K.A. Nyamekye, Surface Photonics, Inc., Jonathan M. Bobbitt, Emily A. Smith Oct 2017

Combined Measurement Of Directional Raman Scattering And Surface-Plasmon-Polariton Cone From Adsorbates On Smooth Planar Gold Surfaces, Charles K.A. Nyamekye, Surface Photonics, Inc., Jonathan M. Bobbitt, Emily A. Smith

Ames Laboratory Accepted Manuscripts

Directional-surface-plasmon-coupled Raman scattering (directional RS) has the combined benefits of surface plasmon resonance and Raman spectroscopy, and provides the ability to measure adsorption and monolayer-sensitive chemical information. Directional RS is performed by optically coupling a 50-nm gold film to a Weierstrass prism in the Kretschmann configuration and scanning the angle of the incident laser under total internal reflection. The collected parameters on the prism side of the interface include a full surface-plasmon-polariton cone and the full Raman signal radiating from the cone as a function of incident angle. An instrument for performing directional RS and a quantitative study of the ...


A Coarse-Graining Approach For Molecular Simulation That Retains The Dynamics Of The All-Atom Reference System By Implementing Hydrodynamic Interactions, Sergiy Markutsya, Monica H. Lamm Oct 2017

A Coarse-Graining Approach For Molecular Simulation That Retains The Dynamics Of The All-Atom Reference System By Implementing Hydrodynamic Interactions, Sergiy Markutsya, Monica H. Lamm

Monica H. Lamm

We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.


Interfacial Self-Assembly Of Polyelectrolyte-Capped Gold Nanoparticles, Honghu Zhang, Srikanth Nayak, Wenjie Wang, Surya K Mallapragada, David Vaknin Oct 2017

Interfacial Self-Assembly Of Polyelectrolyte-Capped Gold Nanoparticles, Honghu Zhang, Srikanth Nayak, Wenjie Wang, Surya K Mallapragada, David Vaknin

Ames Laboratory Accepted Manuscripts

We report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed ...


A Benign Synthesis Of Alane By The Composition-Controlled Mechanochemical Reaction Of Sodium Hydride And Aluminum Chloride, Ihor Z. Hlova, Jennifer Goldston, Shalbh Gupta, Takeshi Kobayashi, Marek Pruski, Vitalij K. Pecharsky Oct 2017

A Benign Synthesis Of Alane By The Composition-Controlled Mechanochemical Reaction Of Sodium Hydride And Aluminum Chloride, Ihor Z. Hlova, Jennifer Goldston, Shalbh Gupta, Takeshi Kobayashi, Marek Pruski, Vitalij K. Pecharsky

Ames Laboratory Accepted Manuscripts

Solid-state mechanochemical synthesis of alane (AlH3) starting from sodium hydride (NaH) and aluminum chloride (AlCl3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a step-wise addition of AlCl3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH-AlCl3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction ...


Nuclear Magnetic Resonance Probe Head Design For Precision Strain Control, T. Kissikov, R. Sarkar, B. T. Bush, Paul C. Canfield, N. J. Curro Oct 2017

Nuclear Magnetic Resonance Probe Head Design For Precision Strain Control, T. Kissikov, R. Sarkar, B. T. Bush, Paul C. Canfield, N. J. Curro

Ames Laboratory Accepted Manuscripts

We present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. As NMR in BaFe2As2 reveals large changes to the electric field gradient and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.


Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr Sep 2017

Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr

Faculty Publications

The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping ...


Spin-Imbalance In A 2d Fermi-Hubbard System, Peter T. Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir S. Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David A. Huse, Waseem S. Bakr Sep 2017

Spin-Imbalance In A 2d Fermi-Hubbard System, Peter T. Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir S. Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David A. Huse, Waseem S. Bakr

Ehsan Khatami

The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping ...


Near-Infrared And Optical Beam Steering And Frequency Splitting In Air-Holes-In-Silicon Inverse Photonic Crystals, Anna C. Tasolamprou, Thomas Koschny, Maria Kafesaki, Costas M. Soukoulis Sep 2017

Near-Infrared And Optical Beam Steering And Frequency Splitting In Air-Holes-In-Silicon Inverse Photonic Crystals, Anna C. Tasolamprou, Thomas Koschny, Maria Kafesaki, Costas M. Soukoulis

Ames Laboratory Accepted Manuscripts

We present the design of a dielectric inverse photonic crystal structure that couples line-defect waveguide propagating modes into highly directional beams of controllable directionality. The structure utilizes a triangular lattice made of air holes drilled in an infinitely thick Si slab, and it is designed for operation in the near-infrared and optical regime. The structure operation is based on the excitation and manipulation of dark dielectric surface states, in particular on the tailoring of the dark states’ coupling to outgoing radiation. This coupling is achieved with the use of properly designed external corrugations. The structure adapts and matches modes that ...


A Stimulated Emission Study Of The Ground State Bending Levels Of Bh2 Through The Barrier To Linearity And Ab Initio Calculations Of Near-Spectroscopic Accuracy, Bing Jin, Dennis J. Clouthier, Riccardo Tarroni Sep 2017

A Stimulated Emission Study Of The Ground State Bending Levels Of Bh2 Through The Barrier To Linearity And Ab Initio Calculations Of Near-Spectroscopic Accuracy, Bing Jin, Dennis J. Clouthier, Riccardo Tarroni

Chemistry Faculty Publications

The ground state bending levels of 11BH2 have been studied experimentally using a combination of low-resolution emission spectroscopy and high-resolution stimulated emission pumping (SEP) measurements. The data encompass the energy range below, through, and above the calculated position of the barrier to linearity. For the bending levels (0,3,0) and above, the data show substantial K-reordering, with the K"a = 1 levels falling well below those with K"a = 0. A comparison of the high-resolution rotationally resolved SEP data to our own very high level ab initio calculations of the rovibronic energy levels shows agreement approaching ...


Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong Aug 2017

Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong

Biology Faculty Publications

Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in ...


Construction And Analysis Of Accurate Exchange-Correlation Potentials, Sviataslau V. Kohut Aug 2017

Construction And Analysis Of Accurate Exchange-Correlation Potentials, Sviataslau V. Kohut

Electronic Thesis and Dissertation Repository

Practical Kohn–Sham density-functional calculations require approximations to the exchange-correlation energy functional, EXC[ρ], or the exchange-correlation potential, vXC(r), defined as the functional derivative of EXC[ρ] with respect to the electron density, ρ. This thesis focuses on the following problems: (i) development of approximate exchange-correlation potentials by modelling the exchange-correlation charge distribution; (ii) accurate approximation of functional derivatives of orbital-dependent functionals; (iii) generation of exchange-correlation potentials from many-electron wavefunctions; (iv) analysis of accurate exchange-correlation potentials in atoms and molecules.

The advantage of modelling the exchange-correlation potential through the exchange-correlation charge distribution, qXC(r), is ...


Lanthanum-Mediated Dehydrogenation Of 1- And 2-Butynes: Spectroscopy And Formation Of La(C4H4) Isomers, Wenjin Cao, Dilrukshi C. Hewage, Dong-Sheng Yang Aug 2017

Lanthanum-Mediated Dehydrogenation Of 1- And 2-Butynes: Spectroscopy And Formation Of La(C4H4) Isomers, Wenjin Cao, Dilrukshi C. Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reactions with 1-butyne and 2-butyne are carried out in a laser-vaporization molecular beam source. Both reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butynes. The dehydrogenated species La(C4H4) is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of La(C4H4) produced from the two reactions exhibit two identical transitions, each consisting of a strong origin band and several vibrational intervals. The two transitions are assigned to the ionization of two isomers: La(η4–CH2 ...


Polar Intermetallics Pr5co2ge3 And Pr7co2ge4 With Planar Hydrocarbon‐Like Metal Clusters, Qisheng Lin, Kaiser Aguirre, Scott M. Saunders, Timothy A. Hackett, Yong Liu, Valentin Taufour, Durga Paudyal, Sergey L. Bud’Ko, Paul C. Canfield, Gordon J. Miller Aug 2017

Polar Intermetallics Pr5co2ge3 And Pr7co2ge4 With Planar Hydrocarbon‐Like Metal Clusters, Qisheng Lin, Kaiser Aguirre, Scott M. Saunders, Timothy A. Hackett, Yong Liu, Valentin Taufour, Durga Paudyal, Sergey L. Bud’Ko, Paul C. Canfield, Gordon J. Miller

Chemistry Publications

Planar hydrocarbon‐like metal clusters may foster new insights linking organic molecules with conjugated π–π bonding interactions and inorganic structures in terms of their bonding characteristics. However, such clusters are uncommon in polar intermetallics. Herein, we report two polar intermetallic phases, Pr5Co2Ge3 and Pr7Co2Ge4, both of which feature such planar metal clusters, namely, ethylene‐like [Co2Ge4] clusters plus the concatenated forms and polyacene‐like [Co2Ge2]n ribbons in Pr5Co2Ge3, and 1,2,4,5‐tetramethylbenzene‐like [Co4Ge6] cluster in Pr7Co2Ge4. Just as in the related planar organic structures, these metal–metalloid species are dominated by covalent bonding interactions. Both ...


Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar Aug 2017

Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photosynthesis is the basis of life on earth, and oxygen evolution catalysts are key components of this complicated, yet not fully understood process. Photosystem II, a large membrane bound pigment-protein complex, is the key system that facilitates oxygenic photosynthesis via the oxygen evolving complex (a natural oxygen evolving catalyst). It is a key component in oxygen producing catalysts, which can be used in fields such as energy production and biomimetic catalysts. The oxygen evolution cycle, or Kok cycle going within it is still not studied completely. In this project, we were studying the vibrational (and structural) state of a Manganese ...