Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Engineering Physics

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 85

Full-Text Articles in Physics

Passively Estimating Index Of Refraction For Specular Reflectors Using Polarimetric Hyperspectral Imaging, Jacob A. Martin Dec 2016

Passively Estimating Index Of Refraction For Specular Reflectors Using Polarimetric Hyperspectral Imaging, Jacob A. Martin

Theses and Dissertations

As off-nadir viewing platforms becoming increasingly prevalent in remote sensing, material classification and ID techniques robust to changing viewing geometries must be developed. Traditionally, either reflectivity or emissivity are used for classification, but these quantities vary with viewing angle. Instead, estimating index of refraction may be advantageous as it is invariant with respect to viewing geometry. This work focuses on estimating index of refraction from LWIR (875-1250 wavenumbers) polarimetric hyperspectral radiance measurements.


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Infrasound Propagation In Terrestrial Planetary Atmospheres, Lynsey B. Schroeder Dec 2016

Infrasound Propagation In Terrestrial Planetary Atmospheres, Lynsey B. Schroeder

Doctoral Dissertations and Master's Theses

Acoustic waves in the infrasonic frequency range, that is below 10 Hertz, have been observed to propagate to high altitudes in Earth's atmosphere. These waves have many sources, both natural and artificial, such as seismic events, convective storm systems, and nuclear explosions. Here, we seek to better understand the characteristics of atmospheric infrasound- below 0.1 Hz in particular- so as to improve the ability to detect their presence and sources. It is well-known that ambient attributes of an atmosphere, such as temperature, density, and composition, directly affect the propagation and growth of waves, and therefore it is likely that these …


Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist Dec 2016

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist

Masters Theses

This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of energy-optimized …


Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 1-A], Alexander Banaszak, Tyler Smith Nov 2016

Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 1-A], Alexander Banaszak, Tyler Smith

Posters-at-the-Capitol

Raman scattering signal enhancement that uses graphene as support, graphene-enhanced Raman scattering (GERS), is a recent phenomenon. It can produce clean and reproducible Raman signals of chemical molecules with significantly enhanced signal intensity in contrast to traditional surface- (SERS) and tip- enhanced Raman scattering (TERS) techniques. While enhancement in SERS and TERS arise due to the electromagnetic mechanism, GERS also relies on a chemical mechanism and therefore shows unique molecular sensitivity and selectivity. In this work, we developed graphene materials decorated with noble metal (silver and gold) nanoparticles for detection of different chemical molecules e.g. methylene blue (MB) and rhodamine …


A Period Examination Through Contemporary Energy Analysis Of Kevin Roche’S Fine Arts Center At University Of Massachusetts-Amherst, L Carl Fiocchi Jr Nov 2016

A Period Examination Through Contemporary Energy Analysis Of Kevin Roche’S Fine Arts Center At University Of Massachusetts-Amherst, L Carl Fiocchi Jr

Doctoral Dissertations

Studies of buildings belonging to a subset of Modernist architecture, Brutalism, have included discussions pertaining to social and architectural history, critical reception, tectonic form and geometry inspirations, material property selections, period technology limitations, and migration of public perceptions. Evaluations of Brutalist buildings’ energy related performances have been restricted to anecdotal observations with particular focus on the building type’s poor thermal performance, a result of the preferred construction method, i.e. monolithic reinforced concrete used as structure, interior finish and exterior finish. A valid criticism, but one that served to dismiss discussion that the possibility of other positive design strategies limiting energy …


Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao Oct 2016

Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett Sep 2016

Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett

Physics and Astronomy Faculty Publications

As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying …


Evaluation Of Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Christopher M. Young Sep 2016

Evaluation Of Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Christopher M. Young

Theses and Dissertations

Neutron radiation detection is an important part of the national strategy for nonproliferation efforts worldwide. Key to the success of these programs is detector material development which establishes the limits of efficiency, sensitivity, and power usage for a detector of practical use. This research focused upon the study of neutron detection using single crystal actinide compounds, specifically UO2, taking advantage of the successful hydrothermal synthesis of UO2 at the Air Force Research Laboratories. Initial indications are that this material may be of sufficient quality for semiconductor application.


Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell Sep 2016

Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell

J. Kissock

Energy use data for the eight-year period 2003–2010 was analyzed for over 1200 single family residences in Village of Yellow Springs, Ohio. Electricity, natural gas, residential building, and weather databases are merged to permit determination of the energy intensity of each home in the village. The energy use intensity for each home is disaggregated into weather independent and weather dependent electric and natural gas use. This use is compared to typical baseline, cooling, and heating energy use for the region. From this comparison, priority homes are identified for energy reduction investment. Collective potential low cost energy reduction is estimated for …


Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock Sep 2016

Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock

J. Kissock

Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home …


Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla Sep 2016

Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla

Shireen Adenwalla Papers

The writing of micrometer-scaled exchange bias domains by local, laser heating of a thin-film heterostructure consisting of a perpendicular anisotropic ferromagnetic Co/Pd multilayer and a (0001) oriented film of the magnetoelectric antiferromagnet Cr2O3 (chromia) is reported. Exchange coupling between chromia’s boundary magnetization and the ferromagnet leads to perpendicular exchange bias. Focused scanning magneto-optical Kerr measurements are used to measure local hysteresis loops and create a map of the exchange bias distribution as a function of the local boundary magnetization imprinted in the antiferromagnetic pinning layer on field cooling. The robust boundary magnetization of the Cr2O …


Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne Aug 2016

Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne

Faculty Publications

Epitaxial Ge1-ySny (y = 0%–7.5%) alloys grown on either Si or Ge-buffered Si substrates by chemical vapor deposition were studied as a function of Sn content using temperature-dependent photoluminescence (PL). PL emission peaks from both the direct bandgap (Γ-valley) and the indirect bandgap (L-valley) to the valence band (denoted by ED and EID, respectively) were clearly observed at 125 and 175 K for most Ge1-ySny samples studied. At 300 K, however, all of the samples exhibited dominant ED emission with either very weak or no measureable EID emission. At 10 K, …


Preliminary Results From A Ground Based Magnetometer Rotation Table, Rachel Newman, April Gross, Jolene Johnson, Kaye Smith, Erick Agrimson, James Flaten Aug 2016

Preliminary Results From A Ground Based Magnetometer Rotation Table, Rachel Newman, April Gross, Jolene Johnson, Kaye Smith, Erick Agrimson, James Flaten

2017 Academic High Altitude Conference

Understanding high altitude balloon rotation is important for many types of scientific measurements, therefore, balloon and payload rotation is a continuing area of interest and research. In this work, we present results obtained from an Arduino logged magnetometer rotated on a ground based rotation table. This table allowed us to precisely rotate and locate the Arduino logged magnetometer. We compare the Arduino logged results with “known magnetic field orientation” using an AIM rocketry altimeter. This comparison allowed us to test the accuracy of our Arduino logged results and the sampling capabilities of our magnetometer system using different rotational speeds.


Abstracts From The 2016 Ahac Conference, Erick Agrimson Aug 2016

Abstracts From The 2016 Ahac Conference, Erick Agrimson

2017 Academic High Altitude Conference

This is a listing of Abstracts from AHAC 2016


Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu Aug 2016

Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu

Graduate Theses and Dissertations

A low-temperature photoluminescence (PL) study was conducted on low-temperature metal modulation epitaxy (MME) grown GaN. By comparing the PL signal from high temperature grown GaN buffer layers, and MME grown cap layers on top of the buffer layers, it was found that MME grown GaN cap has a significantly greater defect-related emission. The band edge PL from MME grown GaN found to be 3.51eV at low temperature. The binding energy of the exciton in GaN is determined to be 21meV through temperature dependence analysis. A PL peak at 3.29eV was found in the luminescence of the MME grown cap layer, …


Instrumentation Of A Self-Correcting Data Acquisition System For Ultrafast Lasers, Fabricio S. Marin Jul 2016

Instrumentation Of A Self-Correcting Data Acquisition System For Ultrafast Lasers, Fabricio S. Marin

DePaul Discoveries

Optical phenomenon in semiconductors and other light-sensitive materials typically happen at very short time durations, and require instruments capable of measuring time resolutions on the order of nanoseconds to femtoseconds. Electronics can only measure up to nanosecond-time lengths. The purpose of this summer research project is to design a system capable of achieving variable time delays with resolutions up to femtosecond range to use in time-resolved experiments with the pump-probe technique. The time delay is achieved using a delay stage driven by a micro stepper-motor which moves in variable increments while an encoder counts the steps and tells a computer …


Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist Jul 2016

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist

Doctoral Dissertations

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, …


Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell Jun 2016

Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell

Kevin Hallinan

Energy use data for the eight-year period 2003–2010 was analyzed for over 1200 single family residences in Village of Yellow Springs, Ohio. Electricity, natural gas, residential building, and weather databases are merged to permit determination of the energy intensity of each home in the village. The energy use intensity for each home is disaggregated into weather independent and weather dependent electric and natural gas use. This use is compared to typical baseline, cooling, and heating energy use for the region. From this comparison, priority homes are identified for energy reduction investment. Collective potential low cost energy reduction is estimated for …


Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock Jun 2016

Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock

Kevin Hallinan

Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home …


Cost-Availability Curves For Hierarchical Implementation Of Residential Energy-Efficiency Measures, Roman Villoria-Siegert, Philip Brodrick, Kevin P. Hallinan, Robert J. Brecha Jun 2016

Cost-Availability Curves For Hierarchical Implementation Of Residential Energy-Efficiency Measures, Roman Villoria-Siegert, Philip Brodrick, Kevin P. Hallinan, Robert J. Brecha

Kevin Hallinan

Historical residential electricity data and natural gas consumption data were collected for, respectively, 1,200 and 178 residences in a small town in the USA. These data were merged with local building and weather databases, and energy consumption models were developed for each residence, revealing substantial variation in heating and cooling intensity. After estimating approximate physical building characteristics, energy profiles for each residence were calculated, and savings from adoption of the most cost-effective energy-efficiency measures for each residence were estimated. Effectively, we wish to leverage commonly available data sets to infer characteristics of building envelopes and equipment, without the need for …


Model For Computing Kinetics Of The Graphene Edge Epitaxial Growth On Copper, Mikhail Khenner Jun 2016

Model For Computing Kinetics Of The Graphene Edge Epitaxial Growth On Copper, Mikhail Khenner

Mathematics Faculty Publications

A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers ona copper surface is used to compute growth of a single-layer graphene island. The speed of theisland's edge advancement on Cu[111] and Cu[100] surfaces is computed as a function of the growthtemperature and pressure. Spatially resolved concentration pro les of the atoms and dimers aredetermined, and the contributions provided by these species to the growth speed are discussed.Island growth in the conditions of a thermal cycling is studied.


Tunable Split-Ring Resonators Using Germanium Telluride, Christopher H. Kodama, Ronald Coutu Jr. Jun 2016

Tunable Split-Ring Resonators Using Germanium Telluride, Christopher H. Kodama, Ronald Coutu Jr.

Faculty Publications

We demonstrate terahertz (THz) split-ring resonator (SRR) designs with incorporated germanium telluride (GeTe) thin films. GeTe is a chalcogenide that undergoes a nonvolatile phase change from the amorphous to crystalline state at approximately 200 °C, depending on the film thickness and stoichiometry. The phase change also causes a drop in the material's resistivity by six orders of magnitude. In this study, two GeTe-incorporated SRR designs were investigated. The first was an SRR made entirely out of GeTe and the second was a gold SRR structure with a GeTe film incorporated into the gap region of the split ring. These devices …


Model For The Electrolysis Of Water And Its Use For Optimization, Roger Lascorz, Javier E. Hasbun Dr Jun 2016

Model For The Electrolysis Of Water And Its Use For Optimization, Roger Lascorz, Javier E. Hasbun Dr

Georgia Journal of Science

The goal of this research was to study the optimization of the electrolysis of water both theoretically and experimentally. For accuracy, 3 hr experiments were made with measurements recorded every 15 min. The results show that a better model than the classical one is needed for water electrolysis. A new model that fits experimental data better is proposed. The results of this new model not only predict hydrogen production in electrolysis of water better, but show a way to predict gas production of any liquid as well as what voltage to use to optimize it.


Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich Jun 2016

Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich

Architectural Engineering

The Architectural Engineering major places a heavy emphasis on structural dynamics and the role of wind and seismic loading in building analysis and design. Buildings of high importance that are critical to community function, such as hospitals, often utilize supplemental damping devices like supplemental viscous fluid dampers or base isolators to reduce the overall demands on the structural system. The design and analysis of these dampers are typically not taught at the undergraduate level, and is frequently performed by mechanical engineers, in lieu of structural engineers.

To better understand and research building behavior with supplemental damping devices, our multi-disciplinary team …


Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas May 2016

Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas

Macalester Journal of Physics and Astronomy

ZnO thin films that function as either transparent conducting oxides in solid-state photovoltaic cells or as nanocrystalline dye-absorbers in dye-sensitized solar cells have the potential to reduce the cost of producing electricity from solar energy. Although there exist many methods to produce ZnO thin films, the most economical and practical method may be oxidation of metallic Zn thin films. This research examined the utility of ex-situ thermal oxidation of DC magnetron sputtered Zn thin films in generating useful ZnO thin films for these photovoltaic applications. We annealed Zn thin films in air at 570° C in order to produce ZnO …


Enhanced Adhesion Of Superhydrophobic Zno Surface, Liqiu Zheng Dr., Chan Kwaichow B. May 2016

Enhanced Adhesion Of Superhydrophobic Zno Surface, Liqiu Zheng Dr., Chan Kwaichow B.

Georgia Journal of Science

The superhydrophobicity and the strong solid-liquid adhesion of the dually structured ZnO surface are attributed to the suitable size of microstructure and nanostructure. This phenomenon, so different from the Lotus effect, can be called the Petal effect— the super hydrophobicity and the enhanced solid-liquid adhesion coexist on the same surface. The Cassie impregnating model was proposed to understand the underlying reason.


Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter May 2016

Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter

Senior Theses

The bifacial solar cell is superior to its monofacial predecessor due to its ability to convert both incident light on top and reflected light from below into energy. The scattering of the reflected light is affected by the property of the material on which it is interacting. To date, little work has been contributed to studying the properties of these materials to determine optimal quantities for bifacial solar cells. In the first experiment, reflective efficiencies compared to the angle of reflection were explored for different grit of sandpaper in order to develop an understanding of how surface texture impacts reflectivity. …


A New Take On Testing: Evaluating Design Systems In Response To The Recent Natural Disaster In Nepal, Jazmine L. Brown May 2016

A New Take On Testing: Evaluating Design Systems In Response To The Recent Natural Disaster In Nepal, Jazmine L. Brown

Creative Activity and Research Day - CARD

In this thesis project I analyze the destruction of the 2015 earthquake in Nepal, specifically in the structural and architectural collapse. I have focused my research on the areas with greatest documented destruction and vulnerability, specifically Kathmandu and the settlements in the Middle Hills. The introduction of a new lateral testing mechanism can provided much needed information on the seismic strengths of vernacular construction methods.


Failure Of Surface Color Cues Under Natural Changes In Lighting, David H. Foster, Iván Marín-Franch May 2016

Failure Of Surface Color Cues Under Natural Changes In Lighting, David H. Foster, Iván Marín-Franch

MODVIS Workshop

Color allows us to effortlessly discriminate and identify surfaces and objects by their reflected light. Although the reflected spectrum changes with the illumination spectrum, cone photoreceptor signals can be transformed to give useful cues for surface color. But what happens when both the spectrum and the geometry of the illumination change, as with lighting from the sun and sky? Is it possible, as a matter of principle, to obtain reliable cues by processing cone signals alone? This question was addressed here by estimating the information provided by cone signals from time-lapse hyperspectral radiance images of five outdoor scenes under natural …