Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Physics

Uncertainty Relation For Mutual Information, James Schneeloch, Curtis J. Broadbent, John C. Howell Dec 2014

Uncertainty Relation For Mutual Information, James Schneeloch, Curtis J. Broadbent, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We postulate the existence of a universal uncertainty relation between the quantum and classical mutual informations between pairs of quantum systems. Specifically, we propose that the sum of the classical mutual information, determined by two mutually unbiased pairs of observables, never exceeds the quantum mutual information. We call this the complementary-quantum correlation (CQC) relation and prove its validity for pure states, for states with one maximally mixed subsystem, and for all states when one measurement is minimally disturbing. We provide results of a Monte Carlo simulation suggesting that the CQC relation is generally valid. Importantly, we also show that the …


Paraxial Ray Optics Cloaking, Joseph S. Choi, John C. Howell Nov 2014

Paraxial Ray Optics Cloaking, Joseph S. Choi, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle (‘paraxial’) limit.


Conservation Of The Spin And Orbital Angular Momenta In Electromagnetism, Konstantin Y. Bliokh, Justin Dressel, Franco Nori Sep 2014

Conservation Of The Spin And Orbital Angular Momenta In Electromagnetism, Konstantin Y. Bliokh, Justin Dressel, Franco Nori

Mathematics, Physics, and Computer Science Faculty Articles and Research

We review and re-examine the description and separation of the spin and orbital angular momenta (AM) of an electromagnetic field in free space. While the spin and orbital AM of light are not separately meaningful physical quantities in orthodox quantum mechanics or classical field theory, these quantities are routinely measured and used for applications in optics. A meaningful quantum description of the spin and orbital AM of light was recently provided by several authors, which describes separately conserved and measurable integral values of these quantities. However, the electromagnetic field theory still lacks corresponding locally conserved spin and orbital AM currents. …


Implementing Generalized Measurements With Superconducting Qubits, Justin Dressel, Todd A. Brun, Alexander N. Korotkov Sep 2014

Implementing Generalized Measurements With Superconducting Qubits, Justin Dressel, Todd A. Brun, Alexander N. Korotkov

Mathematics, Physics, and Computer Science Faculty Articles and Research

We describe a method to perform any generalized purity-preserving measurement of a qubit with techniques tailored to superconducting systems. First, we consider two methods for realizing a two-outcome partial projection: using a thresholded continuous measurement in the circuit QED setup and using an indirect ancilla qubit measurement. Second, we decompose an arbitrary purity-preserving two-outcome measurement into single-qubit unitary rotations and a partial projection. Third, we systematically reduce any multiple-outcome measurement to a sequence of such two-outcome measurements and unitary operations. Finally, we consider how to define suitable fidelity measures for multiple-outcome generalized measurements.


Mapping The Optimal Route Between Two Quantum States, S. J. Weber, A. Chantasri, Justin Dressel, Andrew N. Jordan, K. W. Murch, I. Siddiqi Jul 2014

Mapping The Optimal Route Between Two Quantum States, S. J. Weber, A. Chantasri, Justin Dressel, Andrew N. Jordan, K. W. Murch, I. Siddiqi

Mathematics, Physics, and Computer Science Faculty Articles and Research

A central feature of quantum mechanics is that a measurement result is intrinsically probabilistic. Consequently, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. The ability to control a quantum system in the presence of these fluctuations is of increasing importance in quantum information processing and finds application in fields ranging from nuclear magnetic resonance1 to chemical synthesis2. A detailed understanding of this stochastic evolution is essential for the development of optimized control methods. Here we reconstruct the individual quantum trajectories3, 4, 5 of a superconducting circuit that evolves under the …


Entanglement-Assisted Weak Value Amplification, Shengshi Pang, Justin Dressel, Todd A. Brun Jul 2014

Entanglement-Assisted Weak Value Amplification, Shengshi Pang, Justin Dressel, Todd A. Brun

Mathematics, Physics, and Computer Science Faculty Articles and Research

Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value requires a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting n ancillas, the postselection probability can be increased by a factor of n while keeping the weak value fixed (compared to n …


Compressive Wavefront Sensing With Weak Values, Gregory A. Howland, Daniel J. Lum, John C. Howell Jun 2014

Compressive Wavefront Sensing With Weak Values, Gregory A. Howland, Daniel J. Lum, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We demonstrate a wavefront sensor that unites weak measurement and the compressive-sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field’s transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the wavefront’s real and imaginary components. Compressive-sensing optimization techniques can then recover the wavefront. We acquire high quality, 256 × 256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity.


Simultaneous Measurement Of Complementary Observables With Compressive Sensing, Gregory A. Howland, James Schneeloch, Daniel J. Lum, John C. Howell Jun 2014

Simultaneous Measurement Of Complementary Observables With Compressive Sensing, Gregory A. Howland, James Schneeloch, Daniel J. Lum, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

The more information a measurement provides about a quantum system’s position statistics, the less information a subsequent measurement can provide about the system’s momentum statistics. This information trade-off is embodied in the entropic formulation of the uncertainty principle. Traditionally, uncertainly relations correspond to resolution limits; increasing a detector’s position sensitivity decreases its momentum sensitivity and vice versa. However, this is not required in general; for example, position information can instead be extracted at the cost of noise in momentum. Using random, partial projections in position followed by strong measurements in momentum, we efficiently determine the transverse-position and transverse-momentum distributions of …


Generalized Helicity And Beltrami Fields, Roman V. Buniy, Thomas W. Kephart May 2014

Generalized Helicity And Beltrami Fields, Roman V. Buniy, Thomas W. Kephart

Mathematics, Physics, and Computer Science Faculty Articles and Research

We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy-momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang-Mills action functional 1/4 f(Omega) trF(mu nu) F-mu nu d(4)x subject to the local constraint epsilon(mu nu alpha beta)trF(mu nu)F(alpha beta) = 0 satisfies the covariant non-abelian Beltrami equation.


The Problem Of Confirmation In The Everett Interpretation, Emily Adlam Apr 2014

The Problem Of Confirmation In The Everett Interpretation, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

I argue that the Oxford school Everett interpretation is internally incoherent, because we cannot claim that in an Everettian universe the kinds of reasoning we have used to arrive at our beliefs about quantum mechanics would lead us to form true beliefs. I show that in an Everettian context, the experimental evidence that we have available could not provide empirical confirmation for quantum mechanics, and moreover that we would not even be able to establish reference to the theoretical entities of quantum mechanics. I then consider a range of existing Everettian approaches to the probability problem and show that they …


Colloquium: Understanding Quantum Weak Values: Basics And Applications, Justin Dressel, Mehul Malik, Filippo M. Miatto, Andrew N. Jordan, Robert W. Boyd Mar 2014

Colloquium: Understanding Quantum Weak Values: Basics And Applications, Justin Dressel, Mehul Malik, Filippo M. Miatto, Andrew N. Jordan, Robert W. Boyd

Mathematics, Physics, and Computer Science Faculty Articles and Research

Since its introduction 25 years ago, the quantum weak value has gradually transitioned from a theoretical curiosity to a practical laboratory tool. While its utility is apparent in the recent explosion of weak value experiments, its interpretation has historically been a subject of confusion. Here a pragmatic introduction to the weak value in terms of measurable quantities is presented, along with an explanation for how it can be determined in the laboratory. Further, its application to three distinct experimental techniques is reviewed. First, as a large interaction parameter it can amplify small signals above technical background noise. Second, as a …


Classical Field Approach To Quantum Weak Measurements, Justin Dressel, Konstantin Y. Bliokh, Franco Nori Mar 2014

Classical Field Approach To Quantum Weak Measurements, Justin Dressel, Konstantin Y. Bliokh, Franco Nori

Mathematics, Physics, and Computer Science Faculty Articles and Research

By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be …


Certainty In Heisenberg’S Uncertainty Principle: Revisiting Definitions For Estimation Errors And Disturbance, Justin Dressel, Franco Nori Feb 2014

Certainty In Heisenberg’S Uncertainty Principle: Revisiting Definitions For Estimation Errors And Disturbance, Justin Dressel, Franco Nori

Mathematics, Physics, and Computer Science Faculty Articles and Research

We revisit the definitions of error and disturbance recently used in error-disturbance inequalities derived by Ozawa and others by expressing them in the reduced system space. The interpretation of the definitions as meansquared deviations relies on an implicit assumption that is generally incompatible with the Bell-Kochen-Specker- Spekkens contextuality theorems, and which results in averaging the deviations over a non-positive-semidefinite joint quasiprobability distribution. For unbiased measurements, the error admits a concrete interpretation as the dispersion in the estimation of the mean induced by the measurement ambiguity.We demonstrate how to directly measure not only this dispersion but also every observable moment with …


Avoiding Loopholes With Hybrid Bell-Leggett-Garg Inequalities, Justin Dressel, Alexander N. Korotkov Jan 2014

Avoiding Loopholes With Hybrid Bell-Leggett-Garg Inequalities, Justin Dressel, Alexander N. Korotkov

Mathematics, Physics, and Computer Science Faculty Articles and Research

By combining the postulates of macrorealism with Bell locality, we derive a qualitatively different hybrid inequality that avoids two loopholes that commonly appear in Leggett-Garg and Bell inequalities. First, locally invasive measurements can be used, which avoids the “clumsiness” Leggett-Garg inequality loophole. Second, a single experimental ensemble with fixed analyzer settings is sampled, which avoids the “disjoint sampling” Bell inequality loophole. The derived hybrid inequality has the same form as the Clauser-Horne-Shimony-Holt Bell inequality; however, its quantum violation intriguingly requires weak measurements. A realistic explanation of an observed violation requires either the failure of Bell locality or a preparation conspiracy …


Improving Einstein–Podolsky–Rosen Steering Inequalities With State Information, James Schneeloch, Curtis J. Broadbent, John C. Howell Jan 2014

Improving Einstein–Podolsky–Rosen Steering Inequalities With State Information, James Schneeloch, Curtis J. Broadbent, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We discuss the relationship between entropic Einstein–Podolsky–Rosen (EPR)-steering inequalities and their underlying uncertainty relations along with the hypothesis that improved uncertainty relations lead to tighter EPR-steering inequalities. In particular, we discuss how using information about the state of a quantum system affects oneʼs ability to witness EPR-steering. As an example, we consider the recent improvement to the entropic uncertainty relation between pairs of discrete observables (Berta et al., 2010 [10]). By considering the assumptions that enter into the development of a steering inequality, we derive correct steering inequalities from these improved uncertainty relations and find that they are identical to …


From Quanta To Qualia: How A Paradigm Shift Turns Into Science. Philosophy Study Vol. 4, Deepak Chopra, Menas Kafatos Jan 2014

From Quanta To Qualia: How A Paradigm Shift Turns Into Science. Philosophy Study Vol. 4, Deepak Chopra, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

Ever since the development of quantum mechanics in the first part of the 20th century, a new world view has emerged. Today, the physicalist objective assumption that objects exist independently of acts of observation has been challenged. The repercussions of this radical challenge to our common-sense perception of the world are far-reaching, although not yet generally realized. Here we argue that there is a complementary view to the way science which is being practiced, and that consciousness itself is primary and qualia form the foundation of experience. We outline the arguments of why the new science of qualia will tie …


Ψ-Epistemic Models Are Exponentially Bad At Explaining The Distinguishability Of Quantum States, Matthew S. Leifer Jan 2014

Ψ-Epistemic Models Are Exponentially Bad At Explaining The Distinguishability Of Quantum States, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (state of knowledge) or an ontic state (state of reality)? In realist models of quantum theory, the epistemic view asserts that nonorthogonal quantum states correspond to overlapping probability measures over the true ontic states. This naturally accounts for a large number of otherwise puzzling quantum phenomena. For example, the indistinguishability of nonorthogonal states is explained by the fact that the ontic state sometimes lies in the overlap region, in which case there is nothing in reality that …


Observation Of A Quantum Cheshire Cat In A Matter-Wave Interferometer Experiment, Tobias Denkmayr, Hermann Geppert, Stephan Sponar, Hartmut Lemmel, Alexandre Matzkin, Jeff Tollaksen, Yuji Hasegawa Jan 2014

Observation Of A Quantum Cheshire Cat In A Matter-Wave Interferometer Experiment, Tobias Denkmayr, Hermann Geppert, Stephan Sponar, Hartmut Lemmel, Alexandre Matzkin, Jeff Tollaksen, Yuji Hasegawa

Mathematics, Physics, and Computer Science Faculty Articles and Research

From its very beginning, quantum theory has been revealing extraordinary and counter-intuitive phenomena, such as wave-particle duality, Schrodinger cats and quantum non-locality. Another paradoxical phenomenon found within the framework of quantum mechanics is the 'quantum Cheshire Cat': if a quantum system is subject to a certain pre- and postselection, it can behave as if a particle and its property are spatially separated. It has been suggested to employ weak measurements in order to explore the Cheshire Cat's nature. Here we report an experiment in which we send neutrons through a perfect silicon crystal interferometer and perform weak measurements to probe …


“Spaghetti” Design For Gravitational Wave Superconducting Antenna, Armen Gulian, J Foreman, Vahan Nikoghosyan, Shmuel Nussinov, Louis Sica, Jeff Tollaksen Jan 2014

“Spaghetti” Design For Gravitational Wave Superconducting Antenna, Armen Gulian, J Foreman, Vahan Nikoghosyan, Shmuel Nussinov, Louis Sica, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

A new concept for detectors of gravitational wave radiation is discussed. Estimates suggest that strain sensitivity essentially better than that of the existing devices can be achieved in the wide frequency range. Such sensitivity could be obtained with devices about one meter long. Suggested device consists of multi-billion bimetallic superconducting wires ("spaghettis") and requires cryogenic operational temperatures (~0.3K in the case considered).


Is The Quantum State Real? An Extended Review Of Psi-Ontology Theorems, Matthew S. Leifer Jan 2014

Is The Quantum State Real? An Extended Review Of Psi-Ontology Theorems, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

Towards the end of 2011, Pusey, Barrett and Rudolph derived a theorem that aimed to show that the quantum state must be ontic (a state of reality) in a broad class of realist approaches to quantum theory. This result attracted a lot of attention and controversy. The aim of this review article is to review the background to the Pusey–Barrett–Rudolph Theorem, to provide a clear presentation of the theorem itself, and to review related work that has appeared since the publication of the Pusey–Barrett–Rudolph paper. In particular, this review: Explains what it means for the quantum state to be ontic …


A Bayesian Approach To Compatibility, Improvement, And Pooling Of Quantum States, Matthew S. Leifer, Robert W. Spekkens Jan 2014

A Bayesian Approach To Compatibility, Improvement, And Pooling Of Quantum States, Matthew S. Leifer, Robert W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

In approaches to quantum theory in which the quantum state is regarded as a representation of knowledge, information, or belief, two agents can assign different states to the same quantum system. This raises two questions: when are such state assignments compatible? and how should the state assignments of different agents be reconciled? In this paper, we address these questions from the perspective of the recently developed conditional states formalism for quantum theory [1]. Specifically, we derive a compatibility criterion proposed by Brun, Finkelstein and Mermin from the requirement that, upon acquiring data, agents should update their states using a quantum …


Quantum Non-Barking Dogs, Sara Imari Walker, Paul C. W. Davies, Prasant Samantray, Yakir Aharonov Jan 2014

Quantum Non-Barking Dogs, Sara Imari Walker, Paul C. W. Davies, Prasant Samantray, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the …


Foundations And Applications Of Weak Quantum Measurements, Yakir Aharonov, Eliahu Cohen, Avshalom C. Elitzur Jan 2014

Foundations And Applications Of Weak Quantum Measurements, Yakir Aharonov, Eliahu Cohen, Avshalom C. Elitzur

Mathematics, Physics, and Computer Science Faculty Articles and Research

Weak quantum measurement (WM) is unique in measuring noncommuting operators and other peculiar, otherwise-undetectable phenomena predicted by the two-state-vector-formalism (TSVF). The aim of this article is threefold: (i) introducing the foundations of WM and TSVF, (ii) studying temporal peculiarities predicted by TSVF and manifested by WM, and (iii) presenting applications of WM to single particles.


New Insights On Emergence From The Perspective Of Weak Values And Dynamical Non-Locality, Jeff Tollaksen Jan 2014

New Insights On Emergence From The Perspective Of Weak Values And Dynamical Non-Locality, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, we will examine new fundamental aspects of "emergence" and "information" using novel approaches to quantum mechanics which originated from the group around Aharonov. The two-state vector formalism provides a complete description of pre- and post-selected quantum systems and has uncovered a host of new quantum phenomena which were previously hidden. The most important feature is that any weak coupling to a pre- and post-selected system is effectively a coupling to a "weak value" which is given by a simple expression depending on the two-state vector. In particular, weak values, are the outcomes of so called "weak measurements" …


Tight Knot Spectrum In Qcd, Roman V. Buniy, Jason Cantarella, Thomas W. Kephart, Eric Rawdon Jan 2014

Tight Knot Spectrum In Qcd, Roman V. Buniy, Jason Cantarella, Thomas W. Kephart, Eric Rawdon

Mathematics, Physics, and Computer Science Faculty Articles and Research

We model the observed J(++) mesonic mass spectrum in terms of energies for tightly knotted and linked chromoelectric QCD flux tubes. The data is fit with one- and two-parameter models. We predict a possible new state at approximately 1190 MeV and a plethora of new states above 1690 MeV.


Quantum Harmonic Oscillator With Superoscillating Initial Datum, Roman V. Buniy, Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa Jan 2014

Quantum Harmonic Oscillator With Superoscillating Initial Datum, Roman V. Buniy, Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we study the evolution of superoscillating initial data for the quantum driven harmonic oscillator. Our main result shows that superoscillations are amplified by the harmonic potential and that the analytic solution develops a singularity in finite time. We also show that for a large class of solutions of the Schrodinger equation, superoscillating behavior at any given time implies superoscillating behavior at any other time.


Quantum Non-Locality Vs. Quasi-Local Measurement In The Conditions Of The Aharonov-Bohm Effect, Armen Gulian Jan 2014

Quantum Non-Locality Vs. Quasi-Local Measurement In The Conditions Of The Aharonov-Bohm Effect, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

Theoretical explanation of the Meissner effect involves proportionality between current density and vector potential, which has many deep consequences. As noticed by de Gennes, superconductors in a magnetic field "find an equilibrium state where the sum of kinetic and magnetic energies is minimum" and this state "corresponds to the expulsion of the magnetic field". This statement still leaves an open question: from which source is the superconducting current acquiring its kinetic energy? A naïve answer, perhaps, is from the energy of the magnetic field. However, one can consider situations (Aharonov-Bohm effect), where the classical magnetic field is locally absent in …