Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 91 - 120 of 1941

Full-Text Articles in Physics

Investigations Into Molecular Beam Epitaxial Growth Of Inas/Gasb Superlattices, Lee Michael Murray Dec 2012

Investigations Into Molecular Beam Epitaxial Growth Of Inas/Gasb Superlattices, Lee Michael Murray

Theses and Dissertations

InAs/GaSb superlattices are a material system well suited to growth via molecular beam epitaxy. The ability to tune the band gap over the entire mid and long wave infrared spectrum gives a large number of applications for devices made from InAs/GaSb superlattice material. The growth of high quality InAs/GaSb superlattice material requires a careful study of the parameters used during epitaxial growth. This work investigates the growth of tunnel junctions for InAs/GaSb based superlattice light emitting diodes, the presence of defects in GaSb homoepitaxial layers, and variations in the growth rate of InAs/GaSb superlattice samples ...


An Examination Of Black Hole Binaries Using X-Ray Observations And The Development Of The Bragg Reflection Polarimeter, Ryan Allured Dec 2012

An Examination Of Black Hole Binaries Using X-Ray Observations And The Development Of The Bragg Reflection Polarimeter, Ryan Allured

Theses and Dissertations

Black hole binaries (BHBs) consist of a black hole which accretes matter from a companion star and emits radiation primarily in the X-ray band. They are known to evolve through various states of emission, which are believed to signify changes in the accretion geometry. MAXI J1659--152 is a recently discovered galactic BHB, and we used Rossi X-ray Timing Explorer (RXTE) observations to investigate its state evolution during its 2010 outburst. This evolution was found to be similar to that of other known BHBs, although its thermal spectral component was relatively weak. The data was also used to estimate the black ...


Laser-Induced Electron Diffraction For Probing Rare Gas Atoms, Junliang Xu, Cosmin I. Blaga, Anthony D. Dichiara, Emily Sistrunk, Kaikai Zhang, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin, Pierre Agostini, Louis F. Dimauro Dec 2012

Laser-Induced Electron Diffraction For Probing Rare Gas Atoms, Junliang Xu, Cosmin I. Blaga, Anthony D. Dichiara, Emily Sistrunk, Kaikai Zhang, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin, Pierre Agostini, Louis F. Dimauro

Physics Faculty Research & Creative Works

Recently, using midinfrared laser-induced electron diffraction (LIED), snapshots of a vibrating diatomic molecule on a femtosecond time scale have been captured [C.I. Blaga et al., Nature (London) 483, 194 (2012)]. In this Letter, a comprehensive treatment for the atomic LIED response is reported, a critical step in generalizing this imaging method. Electron-ion differential cross sections (DCSs) of rare gas atoms are extracted from measured angular-resolved, high-energy electron momentum distributions generated by intense midinfrared lasers. Following strong-field ionization, the high-energy electrons result from elastic rescattering of a field-driven wave packet with the parent ion. For recollision energies [greater or equal ...


Rounding Of A First-Order Quantum Phase Transition To A Strong-Coupling Critical Point, Fawaz Hrahsheh, Jose A. Hoyos, Thomas Vojta Dec 2012

Rounding Of A First-Order Quantum Phase Transition To A Strong-Coupling Critical Point, Fawaz Hrahsheh, Jose A. Hoyos, Thomas Vojta

Physics Faculty Research & Creative Works

We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and strong coupling between the colors. In the strong-coupling case, we find a distinct type of infinite-randomness critical point characterized by additional internal degrees of freedom. We investigate its critical properties in detail and find stronger thermodynamic singularities than in the random transverse field Ising chain. We also discuss the implications for higher spatial ...


Disordered Bosons In One Dimension: From Weak- To Strong-Randomness Criticality, Fawaz Hrahsheh, Thomas Vojta Dec 2012

Disordered Bosons In One Dimension: From Weak- To Strong-Randomness Criticality, Fawaz Hrahsheh, Thomas Vojta

Physics Faculty Research & Creative Works

We investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte Carlo simulations. For weak disorder, we find the transition to be in the same universality class as the superfluid-Mott insulator transition of the clean system. The nature of the transition changes for stronger disorder. Beyond a critical disorder strength, we find nonuniversal, disorder-dependent critical behavior. We compare our results to recent perturbative and strong-disorder renormalization group predictions. We also discuss experimental implications as well as extensions of our results to other systems.


Lunar Radiation Environment And Space Weathering From The Cosmic Ray Telescope For The Effects Of Radiation (Crater), Nathan A. Schwadron, T. Baker, B. Blake, A. W. Case, J. F. Cooper, M. Golightly, Andrew P. Jordan, Colin J. Joyce, J. Kasper, K. Kozarev, J. Mislinski, J. Mazur, Harlan E. Spence Dec 2012

Lunar Radiation Environment And Space Weathering From The Cosmic Ray Telescope For The Effects Of Radiation (Crater), Nathan A. Schwadron, T. Baker, B. Blake, A. W. Case, J. F. Cooper, M. Golightly, Andrew P. Jordan, Colin J. Joyce, J. Kasper, K. Kozarev, J. Mislinski, J. Mazur, Harlan E. Spence

Physics Scholarship

[1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these ...


The First Cosmic Ray Albedo Proton Map Of The Moon, Jody K. Wilson, Harlan E. Spence, Justin Kasper, Michael Golightly, J. B. Blake, J. E. Mazur, L. W. Townsend, A. W. Case, M. D. Looper, C. Zeitlin, Nathan A. Schwadron Dec 2012

The First Cosmic Ray Albedo Proton Map Of The Moon, Jody K. Wilson, Harlan E. Spence, Justin Kasper, Michael Golightly, J. B. Blake, J. E. Mazur, L. W. Townsend, A. W. Case, M. D. Looper, C. Zeitlin, Nathan A. Schwadron

Physics Scholarship

[1] Neutrons emitted from the Moon are produced by the impact of galactic cosmic rays (GCRs) within the regolith. GCRs are high-energy particles capable of smashing atomic nuclei in the lunar regolith and producing a shower of energetic protons, neutrons and other subatomic particles. Secondary particles that are ejected out of the regolith become “albedo” particles. The neutron albedo has been used to study the hydrogen content of the lunar regolith, which motivates our study of albedo protons. In principle, the albedo protons should vary as a function of the input GCR source and possibly as a result of surface ...


Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha Dec 2012

Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha

Physics Faculty Publications

Debates about the possibility of a near-term maximum in world oil production have become increasingly prominent over the past decade, with the focus often being on the quantification of geologically available and technologically recoverable amounts of oil in the ground. Economically, the important parameter is not a physical limit to resources in the ground, but whether market price signals and costs of extraction will indicate the efficiency of extracting conventional or nonconventional resources as opposed to making substitutions over time for other fuels and technologies. We present a hybrid approach to the peak-oil question with two models in which the ...


Acoustic Scale From The Angular Power Spectra Of Sdss-Iii Dr8 Photometric Luminous Galaxies, Hee-Jong Seo, Shirley Ho, Martin White, Antonio J. Cuesta, Ashley J. Ross, Shun Saito, For Full List Of Authors, See Publisher's Website. Dec 2012

Acoustic Scale From The Angular Power Spectra Of Sdss-Iii Dr8 Photometric Luminous Galaxies, Hee-Jong Seo, Shirley Ho, Martin White, Antonio J. Cuesta, Ashley J. Ross, Shun Saito, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over ~10,000 deg2 between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale DA(z)/rs = 9.212+0.416-0.404 at z = 0.54, and therefore DA (z) = 1411 ± 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance DA(z) is 1.4σ higher than what is expected for the concordance ΛCDM, in accordance to the trend of other ...


Clustering Of Sloan Digital Sky Survey Iii Photometric Luminous Galaxies: The Measurement, Systematics, And Cosmological Implications, Shirley Ho, Antonio J. Cuesta, Hee-Jong Seo, Roland De Putter, Ashley J. Ross, Martin White, Nikhil Padmanabhan, Shun Saito, For Full List Of Authors, See Publisher's Website. Dec 2012

Clustering Of Sloan Digital Sky Survey Iii Photometric Luminous Galaxies: The Measurement, Systematics, And Cosmological Implications, Shirley Ho, Antonio J. Cuesta, Hee-Jong Seo, Roland De Putter, Ashley J. Ross, Martin White, Nikhil Padmanabhan, Shun Saito, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg2, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg2 and probes a volume of 3 h-3 Gpc3, making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our ...


Evaluation Of Polymer Gel Dosimeters For Measurements Of Dose And Let In Proton Beams, Kevin M. Vredevoogd Dec 2012

Evaluation Of Polymer Gel Dosimeters For Measurements Of Dose And Let In Proton Beams, Kevin M. Vredevoogd

UT GSBS Dissertations and Theses (Open Access)

This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the ...


Same Sign Dimuon Search For Heavy Majorana Mass Neutrinos At The Cms Experiment At Cern And Design Studies Of A Quartz Plate Calorimeter Prototype, Warren James Clarida Dec 2012

Same Sign Dimuon Search For Heavy Majorana Mass Neutrinos At The Cms Experiment At Cern And Design Studies Of A Quartz Plate Calorimeter Prototype, Warren James Clarida

Theses and Dissertations

This paper consists of two studies: the results of a search for heavy Majorana neutrinos (N) using an event signature dened by two like-sign charged muons and two jets, and the results from studies of a prototype quartz plate calorimeter. The data in the Majorana search correspond to an integrated luminosity of 5.0 inverse fb of pp collisions at a centre-of-mass energy of 7 TeV collected with the CMS detector at the Large Hadron Collider. No excess of events are observed beyond the expected standard model background and therefore upper limits are set on the square of the mixing ...


Investigation Of Optical Dipole Traps For Trapping Neutral Atoms For Quantum Computing, Danielle May Dec 2012

Investigation Of Optical Dipole Traps For Trapping Neutral Atoms For Quantum Computing, Danielle May

Physics

No abstract provided.


Building An Alpha Spectrometer For The Cuore Collaboration, David J. Miller Dec 2012

Building An Alpha Spectrometer For The Cuore Collaboration, David J. Miller

Physics

This paper will give the reader a brief introduction to the Standard Model, Neutrinoless Double Beta Decay (0νββ), and the CUORE experiment under construction at Gran Sasso National Lab in Assergi, Italy. The remainder of the paper will describe the process of creating a working alpha spectrometry system using silicon detectors and NIM and CAMAC electronics. Extensive details of the troubleshooting and calibration period are presented as a way for the reader to better understand the concepts involved in alpha spectroscopy and to not repeat mistakes made in this development process.


Aspects Of General Relativity In 1+1 Dimensions, Richard D. Mellinger Jr Dec 2012

Aspects Of General Relativity In 1+1 Dimensions, Richard D. Mellinger Jr

Physics

What would be the properties of a universe with only one spatial dimension and one time dimension? General relativity in 1+1 dimensions is unique since the two curvature terms in the Einstein field equations cancel. This makes the Einstein field equations algebraic rather than differential equations. This special feature can make 1+1 dimensionality attractive as an instructional tool to simplify the mathematics that many beginners find opaque. We explore the implications and features of the Einstein field equations in 1+1 dimensions and find they provide a surprisingly rich and interesting model. We then study an alternate theory ...


Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation ...


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a ...


Physics Faculty Use Of Example Solutions In Teaching Introductory Physics, William O. Mamudi Dec 2012

Physics Faculty Use Of Example Solutions In Teaching Introductory Physics, William O. Mamudi

Master's Theses

This study investigates how physics faculty perceive and use features of example problem solutions. Thirty physics instructors from diverse institutions participated in semi-structured interviews. In addition to open-ended questions, three example problem solution artifacts were used to focus on specific solution features. Data were analyzed to identify instructors’ goals for the use of example solutions and whether their goals were consistent with the solution features that they valued and used. The study concludes that many faculty have three major goals: keeping students cognitively involved, helping students become better problem solvers, and supporting students in learning physics. The study also found ...


Hybrid Plasmonic Nanoantennas: Fabrication, Characterization, And Application, Shengjie Zhai Dec 2012

Hybrid Plasmonic Nanoantennas: Fabrication, Characterization, And Application, Shengjie Zhai

UNLV Theses, Dissertations, Professional Papers, and Capstones

As optical counterpart of microwave antennas, plasmonic nanoantennas are important nanoscale devices for converting propagating optical radiation into confined/enhanced electromagnetic fields. Presently, nanoantennas, with a typical size of 200-500 nm, have found their applications in bio-sensing, bio-imaging, energy harvesting, and disease cure and prevention. With the device feature size of next generation IC goes down to 22 nm or smaller, and biological/chemical sensing reaches the Gene’s level, the sizes of the corresponding nanoantennas have to be scaled down to sub-100nm level. In the literature, these sub-100nm nanoantennas are referred as deep subwavelength nanoantennas as size of such ...


High-Order-Harmonic-Generation Spectroscopy With An Elliptically Polarized Laser Field, M. V. Frolov, N. L. Manakov, T. S. Sarantseva, Anthony F. Starace Dec 2012

High-Order-Harmonic-Generation Spectroscopy With An Elliptically Polarized Laser Field, M. V. Frolov, N. L. Manakov, T. S. Sarantseva, Anthony F. Starace

Anthony F. Starace Publications

Analytic formulas describing high-order-harmonic generation (HHG) by atoms in an intense laser field with small ellipticity are obtained quantum mechanically in the tunneling limit. The results show that factorization of the HHG yield in terms of an electron wave packet and the photorecombination cross section (PRCS) is valid only for s states of a bound atomic electron, whereas the HHG yield for p states involves two different atomic parameters. For the latter case, elliptic HHG spectroscopy enables one to retrieve both the energy and angular dependence of the PRCS of the target atom, as we illustrate for the case of ...


Jitter Impact On Clock Distribution In Lhc Experiments, S. Baron, Themis Mastoridis, J. Troska, P. Baudrenghien Dec 2012

Jitter Impact On Clock Distribution In Lhc Experiments, S. Baron, Themis Mastoridis, J. Troska, P. Baudrenghien

Physics

The LHC Bunch Clock is one of the most important accelerator signals delivered to the experiments. Being directly derived from the Radio Frequency driving the beams in the accelerator by a simple division of its frequency by a factor of 10, the Bunch Clock signal represents the frequency at which the bunches are crossing each other at each experiment. It is thus used to synchronize all the electronics systems in charge of event detection. Its frequency is around 40.079 MHz, but varies with beam parameters (energy, particle type, etc) by a few hundreds of Hz. The present paper discusses ...


A Gauge Theoretic Treatment Of Rovibrational Motion In Diatoms, Gregory Colarch Dec 2012

A Gauge Theoretic Treatment Of Rovibrational Motion In Diatoms, Gregory Colarch

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Born-Oppenheimer approximation has long been the standard approach to solving the Schrödinger equation for diatomic molecules. In it, nuclear and electronic motions are separated into "slow" and "fast" degrees of freedom and couplings between the two are ignored. The neglect of non-adiabatic couplings leads to an incomplete description of diatomic motion, and in a more refined approach, non-adiabatic couplings are uncoupled by transforming the angular momentum of the molecule and electrons into the body-fixed frame.

In this thesis we examine a "modern" form of the Born-Oppenheimer approximation by exploiting a gauge theoretic approach in a description of molecular motion ...


Ultrafast Laser-Induced Damage And The Influence Of Spectral Effects, Jeremy Gulley Nov 2012

Ultrafast Laser-Induced Damage And The Influence Of Spectral Effects, Jeremy Gulley

Jeremy R. Gulley

Numerous studies have investigated the prerequisite role of photoionization in ultrafast laser-induced damage (LID) of bulk dielectrics. This study examines the role of spectral width and instantaneous laser frequency in LID using a frequency dependent multiphoton ionization (MPI) model and numerical simulation of initially 800 nm laser pulses propagating through fused silica. Assuming a band gap of 9 eV, MPI by an 800 nm field is a six-photon process, but when the instantaneous wavelength is greater than 827 nm an additional photon is required for photoionization, reducing the probability of the event by many orders of magnitude. Simulation results suggest ...


Effects Of Sn Doping On The Morphology And Properties Of Fe-Doped In2o3 Epitaxial Films, Tie Zhou, Lin Wei, Yanru Xie, Qinghao Li, Guoxiang Hu, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei, Jun Jiao Nov 2012

Effects Of Sn Doping On The Morphology And Properties Of Fe-Doped In2o3 Epitaxial Films, Tie Zhou, Lin Wei, Yanru Xie, Qinghao Li, Guoxiang Hu, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei, Jun Jiao

Physics Faculty Publications and Presentations

(Sn, Fe)-codoped In₂O₃ epitaxial films were deposited on (111)-oriented Y-stabilized ZrO₂ substrates by pulsed laser deposition with constant Fe concentration and different Sn concentrations. The influence of Sn concentration on the crystal structure and properties of Fe-doped In₂O₃ ferromagnetic semiconductor films has been investigated systematically. Experimental results indicate that Sn doping can effectively reduce the surface roughness and suppresses breakup of the films into separated islands. At the same time, the optical band gap increases and the electrical properties improve correspondingly. However, although the carrier density increases dramatically with the Sn doping, no obvious change of the ferromagnetism ...


Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu Nov 2012

Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu

Weiqiang Chen

Circulating tumor cells (CTCs) detached from both primary and metastatic lesions represent a potential alternative to invasive biopsies as a source of tumor tissue for the detection, characterization and monitoring of cancers. Here we report a simple yet effective strategy for capturing CTCs without using capture antibodies. Our method uniquely utilized the differential adhesion preference of cancer cells to nanorough surfaces when compared to normal blood cells and thus did not depend on their physical size or surface protein expression, a significant advantage as compared to other existing CTC capture techniques.


Defect Structure Of Sb2−Xcrxte3 Single Crystals, Jeffrey Dyck, J. HoráK, P. C. Quayle, Č. DrašAr, P. LošT’ÁK, C. Uher Nov 2012

Defect Structure Of Sb2−Xcrxte3 Single Crystals, Jeffrey Dyck, J. HoráK, P. C. Quayle, Č. DrašAr, P. LošT’ÁK, C. Uher

Jeffrey Dyck

Single crystals of Sb2Te3 doped with Cr (cCr=0–6×1020 cm-3) were prepared by the Bridgman method. The measurements of the Hall coefficient reveal a nonmonotonous dependence of hole concentrations on the Cr content in the crystal. The hole concentration decreases at low content of Cr, while at higher content of Cr it increases again. However, according to magnetic measurements, Cr atoms enter the structure and form uncharged substitutional defects CrSb×, which cannot affect the free carrier concentration directly. The observed dependence can be elucidated by means of a point defect model. The model is based on an assumption ...


Mechanism Of Electric-Field-Induced Segregation Of Additives In A Liquid-Crystal Host, Lu Lu, Vassili Sergan, Philip J. Bos Nov 2012

Mechanism Of Electric-Field-Induced Segregation Of Additives In A Liquid-Crystal Host, Lu Lu, Vassili Sergan, Philip J. Bos

Chemical Physics Publications

The mechanism for electric-field-induced segregation of additives, containing a polar group, in a host liquid crystal is proposed. It is shown that the polarity of an applied dc electric field, or the frequency of an ac electric field, strongly influences the segregation of reactive monomers containing an ester group. An explanation of this result is offered based on the association of dissolved ions with polar groups of the reactive monomers. This association is considered to cause these types of additives to drift to the cell surface in the presence of an external electric field. The described mechanism can be applied ...


Ultra-Thin Perfect Absorber Employing A Tunable Phase Change Material, Mikhail A. Kats, Deepika Sharma, Jiao Lin, Patrice Genevet, Romain Blanchard, Zheng Yang, M. Mumtaz Qazilbash Nov 2012

Ultra-Thin Perfect Absorber Employing A Tunable Phase Change Material, Mikhail A. Kats, Deepika Sharma, Jiao Lin, Patrice Genevet, Romain Blanchard, Zheng Yang, M. Mumtaz Qazilbash

Arts & Sciences Articles

No abstract provided.


Epidemic Spreading On Preferred Degree Adaptive Networks, Shivakumar Jolad, Wenjia Liu, Beate Schmittmann, R. K. P. Zia Nov 2012

Epidemic Spreading On Preferred Degree Adaptive Networks, Shivakumar Jolad, Wenjia Liu, Beate Schmittmann, R. K. P. Zia

Physics and Astronomy Publications

We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree . Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either ‘blind’ or ‘selective’ – depending on whether a node adapts by cutting or adding links to randomly chosen partners ...


Characterization Of Phase Transitions In Vanadium Deuterides, R. L. Tober, Gust Bambakidis Nov 2012

Characterization Of Phase Transitions In Vanadium Deuterides, R. L. Tober, Gust Bambakidis

Gust Bambakidis

No abstract provided.