Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2005

University of Nevada, Las Vegas

Discipline
Keyword
Publication

Articles 1 - 30 of 34

Full-Text Articles in Physics

Afci Quarterly Input – Unlv October 1 Through December 31, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Dec 2005

Afci Quarterly Input – Unlv October 1 Through December 31, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Integral Neutron Multiplicity Measurements From Cosmic Ray Interactions In Lead, Thomas E. Ward, Alexander A. Rimsky-Korsakov, Nikolai A. Kudryashev, Denis E. Beller Oct 2005

Integral Neutron Multiplicity Measurements From Cosmic Ray Interactions In Lead, Thomas E. Ward, Alexander A. Rimsky-Korsakov, Nikolai A. Kudryashev, Denis E. Beller

Transmutation Sciences Physics (TRP)

Sixty element 3He neutron multiplicity detector systems were designed, constructed and tested for use in cosmic ray experiments with a 30-cm cube lead target. A series of measurements were performed for the cosmic ray configuration at ground level (3 meters water equivalent, mwe), in the St. Petersburg metro tunnel (185 mwe), and in the Pyhäsalmi mine in Finland (583 and 1185 mwe). Anomalous coincidence events with charged cosmic ray particles at sea level produced events with 100-120 neutrons due possibly to the total disintegration of the Pb nucleus. These events were also detected at 185 mwe, but the particles …


Afci Quarterly Input – Unlv July 1 Through September 30, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Sep 2005

Afci Quarterly Input – Unlv July 1 Through September 30, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Development Of Dose Conversion Coefficients For Radionuclides Produced In Spallation Neutron Sources Quarterly Progress Report 4/01/05 – 6/30/05, Phillip W. Patton, Mark Rudin Jun 2005

Development Of Dose Conversion Coefficients For Radionuclides Produced In Spallation Neutron Sources Quarterly Progress Report 4/01/05 – 6/30/05, Phillip W. Patton, Mark Rudin

Transmutation Sciences Physics (TRP)

The research consortium comprised of representatives from several universities and national laboratories has successfully generated internal and external dose conversion coefficients for twenty radionuclides produced in spallation neutron sources. These dose coefficients fill data gaps exist in Federal Guide Report No. 11 and in Publications 68 and 72 of the International Commission on Radiological Protection (ICRP), and two articles containing the data have been accepted for publication in the Journal of Health Physics. Currently, more nuclear data is needed for the rare radionuclides produced from a mercury target. While attempting to develop a workable plan to acquire this missing data, …


Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report April-June 2005, Denis Beller Jun 2005

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report April-June 2005, Denis Beller

Transmutation Sciences Physics (TRP)

This project was developed to test a Russian-built Neutron Multiplicity Detector System (NMDS) for measuring neutrons generated in a central target by a variety of accelerators. To assist in experiment design and evaluation, we use the most advanced high energy radiation transport code, MCNPX, to model experiments. Experimental results are compared to computational predictions and discrepancies are investigated. Initial plans were to conduct experiments using a 70-MeV proton cyclotron at the Crocker Nuclear Laboratory at the University of California at Davis and/or a 20 to 40 MeV electron linac (linear accelerator) at the Idaho Accelerator Center (IAC) at Idaho State …


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report April-June 2005, Denis Beller Jun 2005

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report April-June 2005, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments is being conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at will be conducted at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Jun 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10 % of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Shwageraus, A. Galperin, E. Fridman, S. Kolesnikov Jun 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Shwageraus, A. Galperin, E. Fridman, S. Kolesnikov

Fuels Campaign (TRP)

This report presents results of the analysis performed within the framework of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project managed by University of Nevada at Las Vegas, Harry Reid Center for Environmental Studies. The main objective of the study was to explore the basic neutronic feasibility of using MgO-ZrO2 as inert fuel matrix for Pu recycling in conventional Light Water Reactors (LWR).


Afci Quarterly Input – Unlv April Through June, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Jun 2005

Afci Quarterly Input – Unlv April Through June, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin May 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin

Fuels Campaign (TRP)

This report presents the results of the Task 4, defined in working program as: evaluation of reactivity feedback coefficients. Three main parameters of the Fertile-Free Fuel (FFF) lattices were evaluated: Moderator Temperature Coefficient (MTC), Fuel Temperature Coefficient due to Doppler Effect (DC), and soluble Boron reactivity worth (BW).

One of the major design challenges associated with utilization of FFF is deterioration of the temperature coefficients and control materials reactivity worth caused by high thermal cross-section of Pu and consequent hardening of the neutron spectrum. The purpose of the investigation reported in this section is to estimate the potential of addition …


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #2, Jamil M. Renno, Georg F. Mauer Apr 2005

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #2, Jamil M. Renno, Georg F. Mauer

Fuels Campaign (TRP)

This report discusses mainly the fabrication of inert matrix fuels. There are three fabrication routes to obtain inert matrix fuels (IMF). IMF is a dispersion-type fuel in which the actinide phase is distributed as a separate phase in a so called inert matrix. This concept has evolved as one of the most promising in the field of transmutation. The following section discusses each manufacturing route aside.


Development Of Dose Conversion Coefficients For Radionuclides Produced In Spallation Neutron Sources Quarterly Progress Report 1/1/05 – 3/31/05, Phillip W. Patton, Mark Rudin Mar 2005

Development Of Dose Conversion Coefficients For Radionuclides Produced In Spallation Neutron Sources Quarterly Progress Report 1/1/05 – 3/31/05, Phillip W. Patton, Mark Rudin

Transmutation Sciences Physics (TRP)

The research consortium comprised of representatives from several universities and national laboratories has successfully generated internal and external dose conversion coefficients for twenty radionuclides produced in spallation neutron sources. In addition, the group has identified twenty radionuclide that are missing electron capture files and eighteen additional radionuclides missing substantial physical data. The goal for the current year is to develop a methodology that will allow for producing the dose coefficients for these radionuclides with missing data. Methods to obtain these data are being investigated.


Combined Radiation Detection Methods For Assay Of Higher Actinides In Separations Processes, Denis Beller, Warnick Kernan Mar 2005

Combined Radiation Detection Methods For Assay Of Higher Actinides In Separations Processes, Denis Beller, Warnick Kernan

Safeguards Campaign (TRP)

Monitoring of higher actinides (HA, includes neptunium, plutonium, americium, and curium) during the separation of used nuclear fuel has been identified as a critical research area in the U.S. Advanced Fuel Cycle Initiative (AFCI). The AFCI is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. Recycling of used fuel by chemically separating it into uranium, fission products, and HA would be the first step in this new fuel cycle. This will present challenges in terms of protecting fissile materials, monitoring processes and process equipment for the presence or absence …


Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report January-March 2005, Denis Beller Mar 2005

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report January-March 2005, Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is accelerator driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex …


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report January-March 2005, Denis Beller Mar 2005

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report January-March 2005, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments is being conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at will be conducted at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Mar 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide …


Afci Quarterly Input – Unlv January Through March, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Mar 2005

Afci Quarterly Input – Unlv January Through March, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects and activities of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann, Kenneth Czerwinski Feb 2005

Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

Transmutation work at Los Alamos National Laboratory is currently focused on mono-nitride ceramic fuel forms, and consists of closely coordinated “hot” actinide and “cold” inert and surrogate fuels work. Matrix and surrogate materials work involves three major components: (1) fuel matrix synthesis and fabrication, (2) fuel performance, and (3) fuel materials modeling. The synthesis and fabrication component supports basic material studies, as well as actinide fuel fabrication work through fuel fabrication process development. Fuel performance studies are examining the tolerance of nitride-type fuel to heavy irradiation damage. The fuel materials simulation work involves both atomistic and continuum scale modeling employing …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin Feb 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin

Fuels Campaign (TRP)

This report presents the results of the Task 3, defined in working program as: evaluation of burnable poison designs. Adopting the basic design of a standard PWR and Pu loadings required for 18-month cycle (results of Task 2), this part of the program is aimed to estimate performance of each BP design and BP material to address challenges of Fertile-Free Fuel (FFF) Concept. Finally, an optimal BP design will be developed and an overall feasibility of FFF concept will be determined. Basically, the main challenge encountered in neutronic design for a FFF core is to develop reactivity control system which …


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #1, Jamil M. Renno, Georg F. Mauer Jan 2005

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #1, Jamil M. Renno, Georg F. Mauer

Fuels Campaign (TRP)

A Hot Cell robotic assembly: Pick and place dynamic simulation, including feedback control with Matlab, was developed for dispersion fuel manufacture.

The deployment of remote manufacturing of transmuter fuel is a necessity for the transmutation applications. In the reporting period, a virtual hot cell for the manufacturing of dispersion fuel was designed using MSC.visualNastran©, ProEngineer© and MATLAB©. Atypical events were successfully simulated. Relevant physical quantities arising during such events were monitored as well.


Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Denis Beller Jan 2005

Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Denis Beller

Separations Campaign (TRP)

The first step in any transmutation strategy is the separation of radionuclides in used nuclear fuel. The current separation strategy supporting the Advanced Fuel Cycle Initiative (AFCI) program is based on the use of a solvent extraction separation process to separate the actinides, fission products, and uranium from used commercial nuclear fuel, and on the use of pyrochemical separation technologies to process used transmuter fuels. To separate the fission products and transuranic elements from the uranium in used fuel, the national program is developing a new solvent extraction process, the Uranium Extraction Plus, or UREX+, process based on the traditional …


Neutron Multiplicity Measurements Of Target/Blanket Materials, Denis Beller Jan 2005

Neutron Multiplicity Measurements Of Target/Blanket Materials, Denis Beller

Transmutation Sciences Physics (TRP)

To optimize the performance of accelerator-driven sub-critical (ADS) transmutation systems, engineers will need to design the system to operate with a neutron multiplication factor just less than that of a critical, or self-sustaining, system. This design criterion requires particle transport codes that instill the highest level of confidence with minimal uncertainty, because larger uncertainties in the codes require larger safety margins in the design and result in a lower efficiency of the ADS transmuter. For current design efforts in the U.S., a Monte Carlo particle transport code MCNPX is used to model neutron production and transport for spallation neutron systems. …


Development Of Dose Coefficients For Radionuclides Produced In Spallation Targets, Phillip W. Patton, Mark Rudin Jan 2005

Development Of Dose Coefficients For Radionuclides Produced In Spallation Targets, Phillip W. Patton, Mark Rudin

Transmutation Sciences Physics (TRP)

Dose coefficients permit simple determination of radiation dose associated with various exposure scenarios, and ultimately permit radiation safety personnel to assess the health risks to workers in a nuclear facility. Specifically, radiation safety personnel use dose coefficients to determine the radiation dose incurred to a tissue or organ system from a given exposure. These parameters are often expressed in terms of Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs).

The research consortium comprised of representatives from several universities and national laboratories has successfully generated internal and external dose conversion coefficients for twenty radionuclides produced in spallation neutron sources. …


Reactor Physics Studies For The Afci Reactor-Accelerator Coupling Experiments (Race) Project, Denis Beller Jan 2005

Reactor Physics Studies For The Afci Reactor-Accelerator Coupling Experiments (Race) Project, Denis Beller

Transmutation Sciences Physics (TRP)

The specific research objective of this three-year project is to design and conduct an accelerator driven experiment at one of the Texas universities. This experiment will help demonstrate in the U.S. the ability to design, compute, and conduct ADSS experiments; and to predict and measure source importance, coupling efficiency, sub-critical reactor kinetics and source-driven transients. In addition, both steady state and transient ADSS benchmarks will be created for the nuclear community to develop and test new computational codes and methods, and the importance of a driving neutron source in various regions of different subcritical assemblies will be mapped. Experiments will …


Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2005

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

There is an active international interest in lead-bismuth eutectic and similar liquid lead systems because of the relevance to the transmutation of nuclear waste, fast reactors, and spallation neutron sources.

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge because the corrosive behaviors of materials in LBE are not well understood. Most of the available information on LBE systems has come from the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found …


Radiation Transport Modeling Using Parallel Computational Techniques, William Culbreth, Denis Beller Jan 2005

Radiation Transport Modeling Using Parallel Computational Techniques, William Culbreth, Denis Beller

Reactor Campaign (TRP)

One of the most significant tools available for the design and analysis of accelerator-driven systems, such as the systems proposed for transmutation, is the high-energy particle transport code MCNPX. The MCNPX code suite, developed by the national laboratories, allows researchers and engineers to model the complex interactions of high-energy particles with the target and related systems, including the spallation reaction and subsequent neutron multiplication expected in the accelerator targets.

The next stage in the development of the MCNPX code suite is to validate the code by comparing the theoretical predictions from the models with experimental observations. Additionally, the nuclear database, …


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean Jan 2005

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean

Fuels Campaign (TRP)

The goal of this project is to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel. The research effort centers on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at UNLV and Argonne National Laboratory (ANL). Assessing critical equipment and process variables is required to build a successful system that will operate efficiently.


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarter Report, 2005, Clemens Heske Jan 2005

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarter Report, 2005, Clemens Heske

Fuels Campaign (TRP)

In this project we utilize a combination of state-of-the-art soft X-ray spectroscopies to understand the chemical bonding between metal fission products (Pd and Ag) with coating layers in TRISO fuel particles (SiC and pyrocarbon). We are primarily focusing on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress. In the current first project year, we are beginning these investigations with the Pd/SiC interface, as discussed in the previous two quarterly reports. Our first experiments (both using our lab …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for …


University Of Nevada, Las Vegas Transmutation Research Program: Annual Report Academic Year 2004-2005, Anthony Hechanova, Kathy Lauckner Jan 2005

University Of Nevada, Las Vegas Transmutation Research Program: Annual Report Academic Year 2004-2005, Anthony Hechanova, Kathy Lauckner

Transmutation Research Program Reports (TRP)

It is my pleasure to present the UNLV Transmutation Research Program’s fourth annual report that highlights the academic year 2004 – 2005. Supporting this document are the many technical reports and scientific papers that have been generated over the past three years.

In the fourth year of our program, we added 11 new research tasks and saw the conclusion of 8 of the initial 16 independent student research tasks started in 2001 and 2002. In all, the program has sponsored to their conclusion 28 M.S. and 2 Ph.D. degrees. The program supported 58 graduate students and 13 undergraduates in 6 …