Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2005

Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 85

Full-Text Articles in Physics

Afci Quarterly Input – Unlv October 1 Through December 31, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Dec 2005

Afci Quarterly Input – Unlv October 1 Through December 31, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Multiple Channel Laser Beam Combination And Phasing Using Stimulated Brillouin Scattering In Optical Fibers, Brent W. Grime Dec 2005

Multiple Channel Laser Beam Combination And Phasing Using Stimulated Brillouin Scattering In Optical Fibers, Brent W. Grime

Theses and Dissertations

Brightness scaling lasers using stimulated Brillouin scattering (SBS) in optical fibers is explored. A multiple-channel amplifier approach is used to increase the total power of a laser system while avoiding a significant burden on a single channel. The work explores two approaches utilizing both SBS beam cleanup and SBS piston error conjugation. A unique beam combiner that takes advantage of the SBS beam cleanup properties of a long, gradient-index multimode fiber was designed and tested. The beam combiner was developed to combine multiple-channel laser beams simultaneously with high input and output coupling efficiency. The design for the SBS beam combiner …


Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala Dec 2005

Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

A lattice-based quantum algorithm is presented to model the non-linear Schrödinger-like equations in 2 + 1 dimensions. In this lattice-based model, using only 2 qubits per node, a sequence of unitary collide (qubit-qubit interaction) and stream (qubit translation) operators locally evolve a discrete field of probability amplitudes that in the long-wavelength limit accurately approximates a non-relativistic scalar wave function. The collision operator locally entangles pairs of qubits followed by a streaming operator that spreads the entanglement throughout the two dimensional lattice. The quantum algorithmic scheme employs a non-linear potential that is proportional to the moduli square of the wave function. …


Using Ultrasonic Atomization To Produce An Aerosol Of Micron-Scale Particles, Thomas D. Donnelly, J. Hogan '03, A. Mugler '04, M. Schubmehl '02, N. Schommer '04, Andrew J. Bernoff, S. Dasnurkar, T. Ditmire Nov 2005

Using Ultrasonic Atomization To Produce An Aerosol Of Micron-Scale Particles, Thomas D. Donnelly, J. Hogan '03, A. Mugler '04, M. Schubmehl '02, N. Schommer '04, Andrew J. Bernoff, S. Dasnurkar, T. Ditmire

All HMC Faculty Publications and Research

A device that uses ultrasonic atomization of a liquid to produce an aerosol of micron-scale droplets is described. This device represents a new approach to producing targets relevant to laser-driven fusion studies, and to rare studies of nonlinear optics in which wavelength-scale targets are irradiated. The device has also made possible tests of fluid dynamics models in a novel phase space. The distribution of droplet sizes produced by the device and the threshold power required for droplet production are shown to follow scaling laws predicted by fluid dynamics.


Terahertz Studies Of The Dielectric Response And Second-Order Phonons In A Gase Crystal, B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, K. C. Mandal Oct 2005

Terahertz Studies Of The Dielectric Response And Second-Order Phonons In A Gase Crystal, B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, K. C. Mandal

Faculty Publications

No abstract provided.


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Oct 2005

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Physics Faculty Research

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Partition-Based Interpolation For Color Filter Array Demosaicking And Super-Resolution Reconstruction, Min Shao, Kenneth E. Barner, Russell C. Hardie Oct 2005

Partition-Based Interpolation For Color Filter Array Demosaicking And Super-Resolution Reconstruction, Min Shao, Kenneth E. Barner, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

A class of partition-based interpolators that addresses a variety of image interpolation applications are proposed. The proposed interpolators first partition an image into a finite set of partitions that capture local image structures. Missing high resolution pixels are then obtained through linear operations on neighboring pixels that exploit the captured image structure. By exploiting the local image structure, the proposed algorithm produces excellent performance on both edge and uniform regions. The presented results demonstrate that partition-based interpolation yields results superior to traditional and advanced algorithms in the applications of color filter array (CFA) demosaicking and super-resolution reconstruction.


Afci Quarterly Input – Unlv July 1 Through September 30, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Sep 2005

Afci Quarterly Input – Unlv July 1 Through September 30, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Systematic, Multisite Short-Range-Order Corrections To The Electronic Structure Of Disordered Alloys From First Principles: The Kkr Nonlocal Cpa From The Dynamical Cluster Approximation, D. A. Biava, Subhradip Ghosh, Duane D. Johnson, W. A. Shelton, Andrei V. Smirnov Sep 2005

Systematic, Multisite Short-Range-Order Corrections To The Electronic Structure Of Disordered Alloys From First Principles: The Kkr Nonlocal Cpa From The Dynamical Cluster Approximation, D. A. Biava, Subhradip Ghosh, Duane D. Johnson, W. A. Shelton, Andrei V. Smirnov

Duane D. Johnson

Although the Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA) is used widely to configurationally average and get electronic structures and energies of disordered alloys, a single-site CPA misses local environment effects, including short-range order (SRO). A proposed nonlocal CPA (NLCPA) recovers translational invariance of the effective medium via k-space coarse graining from the dynamical cluster approximation (DCA), where corrections are systematic as cluster size increases. We implement a first-principles KKR-NLCPA/DCA and show the effects of environment, including SRO, on the electronic structures of fcc CuAu and bcc NiAl.


Genetic Programming For Multitimescale Modeling, Kumara Sastry, Duane D. Johnson, David E. Goldberg, Pascal Bellon Aug 2005

Genetic Programming For Multitimescale Modeling, Kumara Sastry, Duane D. Johnson, David E. Goldberg, Pascal Bellon

Duane D. Johnson

A bottleneck for multitimescale thermally activated dynamics is the computation of the potential energy surface. We explore the use of genetic programming (GP) to symbolically regress a mapping of the saddle-point barriers from only a few calculated points via molecular dynamics, thereby avoiding explicit calculation of all barriers. The GP-regressed barrier function enables use of kinetic Monte Carlo to simulate real-time kinetics (seconds to hours) based upon realistic atomic interactions. To illustrate the concept, we apply a GP regression to vacancy-assisted migration on a surface of a concentrated binary alloy (from both quantum and empirical potentials) and predict the diffusion …


47th Rocky Mountain Conference On Analytical Chemistry Jul 2005

47th Rocky Mountain Conference On Analytical Chemistry

Rocky Mountain Conference on Magnetic Resonance

Final program, abstracts, and information about the 47th annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-endorsed by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Denver, Colorado, July 31 - August 4, 2005.


Investigation Of The Superconducting Properties Of Niobium Radio-Frequency Cavities, Gianluigi Ciovati Jul 2005

Investigation Of The Superconducting Properties Of Niobium Radio-Frequency Cavities, Gianluigi Ciovati

Physics Theses & Dissertations

Radio-frequency (rf) superconducting cavities are widely used to increase the energy of a charged particle beam in particle accelerators. The maximum gradients of cavities made of bulk niobium have constantly improved over the last ten years and they are approaching the theoretical limit of the material. Nevertheless, rf tests of niobium cavities are still showing some "anomalous" losses (so-called "Q-drop"), characterized by a marked increase of the surface resistance at high rf fields, in absence of field emission. A low temperature "in-situ" baking under ultra-high vacuum has been successfully applied by several laboratories to reduce those losses and …


Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report April-June 2005, Denis Beller Jun 2005

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report April-June 2005, Denis Beller

Transmutation Sciences Physics (TRP)

This project was developed to test a Russian-built Neutron Multiplicity Detector System (NMDS) for measuring neutrons generated in a central target by a variety of accelerators. To assist in experiment design and evaluation, we use the most advanced high energy radiation transport code, MCNPX, to model experiments. Experimental results are compared to computational predictions and discrepancies are investigated. Initial plans were to conduct experiments using a 70-MeV proton cyclotron at the Crocker Nuclear Laboratory at the University of California at Davis and/or a 20 to 40 MeV electron linac (linear accelerator) at the Idaho Accelerator Center (IAC) at Idaho State …


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report April-June 2005, Denis Beller Jun 2005

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report April-June 2005, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments is being conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at will be conducted at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Jun 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10 % of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Shwageraus, A. Galperin, E. Fridman, S. Kolesnikov Jun 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Shwageraus, A. Galperin, E. Fridman, S. Kolesnikov

Fuels Campaign (TRP)

This report presents results of the analysis performed within the framework of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project managed by University of Nevada at Las Vegas, Harry Reid Center for Environmental Studies. The main objective of the study was to explore the basic neutronic feasibility of using MgO-ZrO2 as inert fuel matrix for Pu recycling in conventional Light Water Reactors (LWR).


Afci Quarterly Input – Unlv April Through June, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Jun 2005

Afci Quarterly Input – Unlv April Through June, 2005, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Scene-Based Nonuniformity Correction Technique For Focal-Plane Arrays Using Readout Architecture, Balaji Narayanan, Russell C. Hardie, Robert A. Muse Jun 2005

Scene-Based Nonuniformity Correction Technique For Focal-Plane Arrays Using Readout Architecture, Balaji Narayanan, Russell C. Hardie, Robert A. Muse

Electrical and Computer Engineering Faculty Publications

Spatial fixed pattern noise is a common and major problem in modern infrared imagers due to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and the digitization electronics, involved in multiplexing the signals from the photodiodes, causes further nonuniformity. In this paper, we describe a novel scene based nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. Firstly, the nonuniformity from the readout amplifiers is corrected using knowledge of the readout architecture of the imaging system. In the second stage, the nonuniformity resulting …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin May 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin

Fuels Campaign (TRP)

This report presents the results of the Task 4, defined in working program as: evaluation of reactivity feedback coefficients. Three main parameters of the Fertile-Free Fuel (FFF) lattices were evaluated: Moderator Temperature Coefficient (MTC), Fuel Temperature Coefficient due to Doppler Effect (DC), and soluble Boron reactivity worth (BW).

One of the major design challenges associated with utilization of FFF is deterioration of the temperature coefficients and control materials reactivity worth caused by high thermal cross-section of Pu and consequent hardening of the neutron spectrum. The purpose of the investigation reported in this section is to estimate the potential of addition …


Studies On Novel Semiconductor Detectors And Front-End Electronics For Heavy Flavor Decay Studies, Gustavo Kertzscher May 2005

Studies On Novel Semiconductor Detectors And Front-End Electronics For Heavy Flavor Decay Studies, Gustavo Kertzscher

Honors Capstone Projects - All

I have studied novel semiconductor detectors designed to provide precise space point information of the trajectory of charged subatomic particles produced in high energy physics (HEP) collisions. The technological thrust aims toward maintaining good performance of these detectors in a hard radiation environment for an extended period of time. My studies approached two different types of silicon devices: a whole wafer comprised of test structures and pixel devices designed for the inner vertex detector of the BTeV experiment, and small test structures of a novel type of quasi-3D detectors developed in the context of the CERN RD50 collaboration. This collaboration …


Tb3+-Doped K Pb2Br5: Low-Energy Phonon Mid-Infrared Laser Crystal, U. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker, S. A. Payne Apr 2005

Tb3+-Doped K Pb2Br5: Low-Energy Phonon Mid-Infrared Laser Crystal, U. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker, S. A. Payne

Faculty Publications

No abstract provided.


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #2, Jamil M. Renno, Georg F. Mauer Apr 2005

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #2, Jamil M. Renno, Georg F. Mauer

Fuels Campaign (TRP)

This report discusses mainly the fabrication of inert matrix fuels. There are three fabrication routes to obtain inert matrix fuels (IMF). IMF is a dispersion-type fuel in which the actinide phase is distributed as a separate phase in a so called inert matrix. This concept has evolved as one of the most promising in the field of transmutation. The following section discusses each manufacturing route aside.


Size Evaluation Of Corrosion Precursor Pitting Using Near-Field Millimeter Wave Nondestructive Testing Methods, Mohammad Tayeb Ahmad Ghasr, Brian D. Carroll, Sergey Kharkovsky, R. Zoughi, R. Austin Apr 2005

Size Evaluation Of Corrosion Precursor Pitting Using Near-Field Millimeter Wave Nondestructive Testing Methods, Mohammad Tayeb Ahmad Ghasr, Brian D. Carroll, Sergey Kharkovsky, R. Zoughi, R. Austin

Electrical and Computer Engineering Faculty Research & Creative Works

Early detection of corrosion precursor pitting and estimation of its overall dimensions directly affects the required effort and cost associated with repair and maintenance of critical aircraft structural components. The magnitude and phase of a reflected signal from a pitting are directly related to its dimensions. This paper presents a millimeter wave probe and a sizing procedure used to detect and evaluate overall pitting dimensions.


Deconvolution Analysis Of Laser Pulse Profiles From 3-D Ladar Temporal Returns, Michael D. Walter Mar 2005

Deconvolution Analysis Of Laser Pulse Profiles From 3-D Ladar Temporal Returns, Michael D. Walter

Theses and Dissertations

Three-dimensional laser imaging systems offer important advantages for battlefield applications, such as night-time targeting and tactical reconnaissance. Recently developed technologies used by coherent detection systems that collect temporally resolved images include arrays of Avalanche Photo-Diodes (APD), Geiger mode APDs, and photo-diodes. Frequently, LADAR systems produce waveforms from each detector that characterize the convolution of the transmitted laser pulse with the target surface. The pulse convolution generates uncertainty as to the precise location of a target surface, which can severely impact various weapon systems' targeting capability. This work analyzes two deconvolution techniques: Wiener filtering and an iterative process derived from the …


Crossover Energetics For Halogenated Si(100): Vacancy Line Defects, Dimer Vacancy Lines, And Atom Vacancy Lines, G. J. Xu, Nikolai A. Zarkevich, Abhishek Agrawal, A. W. Signore, B. R. Trenhaile, Duane D. Johnson, J. H. Weaver Mar 2005

Crossover Energetics For Halogenated Si(100): Vacancy Line Defects, Dimer Vacancy Lines, And Atom Vacancy Lines, G. J. Xu, Nikolai A. Zarkevich, Abhishek Agrawal, A. W. Signore, B. R. Trenhaile, Duane D. Johnson, J. H. Weaver

Duane D. Johnson

We investigated surface patterning of I-Si(100)-(2×1) both experimentally and theoretically. Using scanning tunneling microscopy, we first examined I destabilization of Si(100)-(2×1) at near saturation. Dimer vacancies formed on the terraces at 600 K, and they grew into lines that were perpendicular to the dimer rows, termed vacancy line defects. These patterns were distinctive from those induced by Cl and Br under similar conditions since the latter formed atom and dimer vacancy lines that were parallel to the dimer rows. Using first-principles density functional theory, we determined the steric repulsive interactions associated with iodine and showed how the observed defect patterns …


Using Liquid Crystal Spatial Light Modulators For Closed Loop Tracking And Beam Steering With Phase Holography, Michael J. Perry Mar 2005

Using Liquid Crystal Spatial Light Modulators For Closed Loop Tracking And Beam Steering With Phase Holography, Michael J. Perry

Theses and Dissertations

Optical Phased Array (OPA) technology offers advantages in the reduction of size, weight, and power of optical steering devices. Nematic liquid crystal (LC) spatial light modulators (SLMs) have been studied as a potential candidate for building non-mechanical OPAs. They can steer a laser beam and split the beam into multiple beams. This thesis builds upon the prior research showing each split beam can be individually controlled, including variation in intensity. A closed loop tracking scenario shows the flexibility of the SLM by tracking and stabilizing an incoming beam. Results show that applying a phase grating to the SLM has limitations …


Size-Driven Domain Reorientation In Hydrothermally Derived Lead Titanate Nanoparticles, Zhiyuan Ye, Elliot B. Slamovich, Alexander H. King Mar 2005

Size-Driven Domain Reorientation In Hydrothermally Derived Lead Titanate Nanoparticles, Zhiyuan Ye, Elliot B. Slamovich, Alexander H. King

Alexander H. King

High-resolution transmission electron microscopy studies of hydrothermally derived platelike lead titanate nanoparticles reveal that below a critical size of approximately 70 nm, the single ferroelectric domain polarization axis reorients from perpendicular to parallel to the plate. We suggest that during particle growth, ions in the hydrothermal processing medium compensate for the ferroelectric depolarization energy. When the processing medium is removed by washing and drying, single domain nanoparticles minimize their depolarization energy by c-axis flipping.


Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report January-March 2005, Denis Beller Mar 2005

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report January-March 2005, Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is accelerator driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex …


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report January-March 2005, Denis Beller Mar 2005

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report January-March 2005, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments is being conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at will be conducted at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Mar 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide …