Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2002

Electron scattering

Articles 1 - 4 of 4

Full-Text Articles in Physics

Slow Convergence Of The Born Approximation For Electron-Atom Ionization, Stephenie J. Jones, Don H. Madison Dec 2002

Slow Convergence Of The Born Approximation For Electron-Atom Ionization, Stephenie J. Jones, Don H. Madison

Physics Faculty Research & Creative Works

It is usually assumed that the first-Born approximation for electron-atom ionization becomes valid for the fully differential cross section at sufficiently high impact energies, at least for asymmetric collisions where the projectile suffers only a small energy loss and is scattered by a small angle. Here we investigate this assumption quantitatively for ionization of hydrogen atoms. We find that convergence of the Born approximation to the correct nonrelativistic result is generally achieved only at energies where relativistic effects start to become important. Consequently, the assumption that the Born approximation becomes valid for high energy is inaccurate, since by the time …


Differential Cross Sections And Cross-Section Ratios For The Electron-Impact Excitation Of The Neon 2p⁵3s Configuration, Murtadha A. Khakoo, James M. Wrkich, Mary Lu Larsen, G. Kleiban, Isik Kanik, Sandor Trajmar, Michael J. Brunger, P. J O Teubner, Albert Crowe, Christopher J. Fontes, Robert E H Clark, Vlado Zeman, Klaus Bartschat, Don H. Madison, Rajesh C. Srivastava, Allan Daniel Stauffer Jun 2002

Differential Cross Sections And Cross-Section Ratios For The Electron-Impact Excitation Of The Neon 2p⁵3s Configuration, Murtadha A. Khakoo, James M. Wrkich, Mary Lu Larsen, G. Kleiban, Isik Kanik, Sandor Trajmar, Michael J. Brunger, P. J O Teubner, Albert Crowe, Christopher J. Fontes, Robert E H Clark, Vlado Zeman, Klaus Bartschat, Don H. Madison, Rajesh C. Srivastava, Allan Daniel Stauffer

Physics Faculty Research & Creative Works

Electron-impact differential cross-section measurements for the excitation of the 2p53s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n = 2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We …


Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich Apr 2002

Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Low-energy electron emission spectra are studied in collisions of 3.6 MeV/amu Au53+ ions with neon and argon atoms for well-defined degrees of target ionization. We calculate doubly differential cross sections as functions of the recoil-ion charge state in the continuum-distorted-wave with eikonal initial-state approximation using a binomial analysis of the total and differential ionization probabilities, and compare them with the present and with previously published experimental data. Very good agreement is found for the single-ionization spectra and for double ionization of neon, while some discrepancies are observed in the spectra for double and triple ionization of argon.


Simultaneous Projectile-Target Ionization: A Novel Approach To (E, 2e) Experiments On Ions, Holger Kollmus, Robert Moshammer, Ronald E. Olson, Siegbert Hagmann, Michael Schulz, Joachim Hermann Ullrich Feb 2002

Simultaneous Projectile-Target Ionization: A Novel Approach To (E, 2e) Experiments On Ions, Holger Kollmus, Robert Moshammer, Ronald E. Olson, Siegbert Hagmann, Michael Schulz, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

A kinematically complete experiment for simultaneous ionization of a projectile and target has been performed for 3.6 MeV/u C2+ on He collisions measuring the final vector momenta of the He1+ recoil ion and of two electrons (projectile, target) in coincidence with the emerging C3+ projectile. The feasibility of an event-by-event separation of the various reaction channels, among them the ionization of C2+ by the interaction with a quasifree target electron, is demonstrated in agreement with six-body classical trajectory Monte Carlo calculations, paving the way to kinematically complete electron-ion scattering experiments.