Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Stability Of Self-Similar Solutions For Van Der Waals Driven Thin Film Rupture, Thomas P. Witelski, Andrew J. Bernoff Sep 1999

Stability Of Self-Similar Solutions For Van Der Waals Driven Thin Film Rupture, Thomas P. Witelski, Andrew J. Bernoff

All HMC Faculty Publications and Research

Recent studies of pinch-off of filaments and rupture in thin films have found infinite sets of first-type similarity solutions. Of these, the dynamically stable similarity solutions produce observable rupture behavior as localized, finite-time singularities in the models of the flow. In this letter we describe a systematic technique for calculating such solutions and determining their linear stability. For the problem of axisymmetric van der Waals driven rupture (recently studied by Zhang and Lister), we identify the unique stable similarity solution for point rupture of a thin film and an alternative mode of singularity formation corresponding to annular “ring rupture.”


Black Holes And Five-Brane Thermodynamics, Emil Martinec, Vatche Sahakian Aug 1999

Black Holes And Five-Brane Thermodynamics, Emil Martinec, Vatche Sahakian

All HMC Faculty Publications and Research

The phase diagram for Dp-branes in M theory compactified on T4,T4/Z2,T5, and T6 is constructed. As for the lower-dimensional tori considered in our previous work [E. Martinec and V. Sahakian, Phys. Rev. D 59, 124005 (1999)], the black brane phase at high entropy connects onto matrix theory at low entropy; we thus recover all known instances of matrix theory as consequences of the Maldacena conjecture. The difficulties that arise for T6 are reviewed. We also analyze the D1-D5 system on T5; we discuss its relation to matrix models …


Probing Nonequilibrium Electron Distributions In Gold By Use Of Second Harmonic Generation, K. L. Moore '99, Thomas D. Donnelly Jul 1999

Probing Nonequilibrium Electron Distributions In Gold By Use Of Second Harmonic Generation, K. L. Moore '99, Thomas D. Donnelly

All HMC Faculty Publications and Research

Second-harmonic radiation is generated at a gold surface by use of a laser pulse that is varied in duration from 14 to 29 fs and in intensity from 109 to 1011W/cm2 . At laser intensities below 1010W/cm2 , the second-harmonic signal has the expected quadratic dependence on pump-laser intensity; however, at higher intensities, the dependence is supraquadratic. This difference arises because the leading edge of the laser pulse interacts significantly with the gold electrons to create a nonequilibrium, photoexcited distribution. The second-harmonic generation process occurs before electron–electron or electron–phonon collisions can equilibrate the …


Black Holes And The Sym Diagram. Ii, Emil Martinec, Vatche Sahakian May 1999

Black Holes And The Sym Diagram. Ii, Emil Martinec, Vatche Sahakian

All HMC Faculty Publications and Research

The complete phase diagram of objects in M theory compactified on tori Tp,p=1,2,3, is elaborated. Phase transitions occur when the object localizes on cycle(s) (the Gregory-Laflamme transition), or when the area of the localized part of the horizon becomes one in string units (the Horowitz-Polchinski correspondence point). The low-energy, near-horizon geometry that governs a given phase can match onto a variety of asymptotic regimes. The analysis makes it clear that the matrix conjecture is a special case of the Maldacena conjecture.


Black Holes And The Sym Phase Diagram, Miao Li, Emil Martinec, Vatche Sahakian Jan 1999

Black Holes And The Sym Phase Diagram, Miao Li, Emil Martinec, Vatche Sahakian

All HMC Faculty Publications and Research

Making combined use of the matrix and Maldacena conjectures, the relation between various thermodynamic transitions in super Yang-Mills (SYM) theory and supergravity is clarified. The thermodynamic phase diagram of an object in DLCQ M theory in four and five non-compact space dimensions is constructed; matrix strings, matrix black holes, and black p-branes are among the various phases. Critical manifolds are characterized by the principles of correspondence and longitudinal localization, and a triple point is identified. The microscopic dynamics of the matrix string near two of the transitions is studied; we identify a signature of black hole formation from SYM physics.