Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Nov 1998

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium …


Insulator-Metal Crossover Near Optimal Doping In Pr22xcexcuo4: Anomalous Normal-State Low Temperature Resistivity, P. Fournier, P. Mohanty, E. Maiser, S. Darzens, T. Venkatesan, C. J. Lobb, G. Czjzek, Richard A. Webb, R. L. Greene Nov 1998

Insulator-Metal Crossover Near Optimal Doping In Pr22xcexcuo4: Anomalous Normal-State Low Temperature Resistivity, P. Fournier, P. Mohanty, E. Maiser, S. Darzens, T. Venkatesan, C. J. Lobb, G. Czjzek, Richard A. Webb, R. L. Greene

Faculty Publications

Normal-state resistivity measurements at high fields and low temperatures in electron-doped Pr2-xCexCuO4 thin films reveal an insulator-metal crossover near a doping level x≈0.15, similar to a previous report on hole-doped La2-xSrxCuO4. The temperature dependence of the resistivity of insulatinglike samples is sublogarithmic, while for metallic samples (with x = 0.17) the resistivity is linear from 40 mK to 40 K. This surprising latter observation suggests an unusual contribution to the scattering processes at low temperature in these materials. We conclude that the ground state at x = 0.15, corresponding …


Four Paradoxes Involving The Second Law Of Thermodynamics, D. P. Sheehan Jun 1998

Four Paradoxes Involving The Second Law Of Thermodynamics, D. P. Sheehan

Physics and Biophysics: Faculty Scholarship

Recently four independent paradoxes have been proposed which appear to challenge the second law of thermodynamics [1-8]. These paradoxes are briefly reviewed. It is shown that each paradox results from a synergism of two broken symmetries - one geometric, one thermodynamic


Factorization For High-Energy Scattering, Ian Balitsky Jan 1998

Factorization For High-Energy Scattering, Ian Balitsky

Physics Faculty Publications

I demonstrate that the amplitude for the high-energy scattering can be factorized into a product of two independent functional integrals over “fast” and “slow” fields which interact by means of Wilson-line operators—gauge factors ordered along the straight lines.