Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Image Restoration Of Dispersion-Degraded Images From A Liquid-Crystal Beam Steerer, Ronald J. Broessel, Vince Dominic, Russell C. Hardie Nov 1995

Image Restoration Of Dispersion-Degraded Images From A Liquid-Crystal Beam Steerer, Ronald J. Broessel, Vince Dominic, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Liquid-crystal arrays represents one of the first practical technologies capable of steering light by electronic control only. We use such a device to steer the field of view of a broadband imaging sensor. Unfortunately, dispersion degrades the image quality by smearing out details in the image and by introducing multiple diffraction orders (echoes) at the detector plane. We present a method to compensate for these unwanted effects and thus restore the broadband images obtained with the beam steerer. We use the beam-propagation method to find the wavelength-dependent impulse response, from which we determine the appropriate Wiener filter. When training data ...


Aliasing Reduction In Staring Infrared Imagers Utilizing Subpixel Techniques, Joseph C. Gillette, Thomas M. Stadtmiller, Russell C. Hardie Nov 1995

Aliasing Reduction In Staring Infrared Imagers Utilizing Subpixel Techniques, Joseph C. Gillette, Thomas M. Stadtmiller, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

We introduce and analyze techniques for the reduction of aliased signal energy in a staring infrared imaging system. A standard staring system uses a fixed two-dimensional detector array that corresponds to a fixed spatial sampling frequency determined by the detector pitch or spacing. Aliasing will occur when sampling a scene containing spatial frequencies exceeding half the sampling frequency. This aliasing can significantly degrade the image quality. The aliasing reduction schemes presented here, referred to as microscanning, exploit subpixel shifts between time frames of an image sequence. These multiple images are used to reconstruct a single frame with reduced aliasing. If ...


Comparison Of Time-Domain Reflectometry Performance Factors For Several Dielectric Geometries: Theory And Experiments, S. V. Maheshwarla, R. Venkatasubramanian, Robert F. Boehm Aug 1995

Comparison Of Time-Domain Reflectometry Performance Factors For Several Dielectric Geometries: Theory And Experiments, S. V. Maheshwarla, R. Venkatasubramanian, Robert F. Boehm

Electrical and Computer Engineering Faculty Publications

We propose three nontraditional dielectric geometries and present an experimental and theoretical analysis and comparison of time domain reflectometry (TDR) performances for them. The traditional geometry (the probes inserted in material of essentially infinite extent) is compared to three nontraditional geometries where the probes are affixed outside of a core sample, inside of a bore, or flat on the surface of a semi-infinite solid. Our derivation relates the velocity of electromagnetic wave propagation to the complex permittivities and permeabilities of the media and the geometry for the three nontraditional configurations. Experimental results for air, styrofoam, dry sand, wet sand of ...


Guest Editorial: Special Section On Photorefractive Nonlinear Optics, Partha P. Banerjee Aug 1995

Guest Editorial: Special Section On Photorefractive Nonlinear Optics, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

Hand in hand with experimental work in photorefractives, there is a lot of activity in modeling photorefractive materials and experimental observations in the open literature. This special section contains a paper by Banerjee and Jarem, who use a rigorous coupled wave theory to analyze two- and multiple-wave mixing photorefractive barium titanate, modeled through the Kukhtarev equations.


Transient Wave Mixing And Recording Kinetics In Photorefractive Barium Titanate: A Nonlinear Coupled Mode Approach, Partha P. Banerjee, John M. Jarem Aug 1995

Transient Wave Mixing And Recording Kinetics In Photorefractive Barium Titanate: A Nonlinear Coupled Mode Approach, Partha P. Banerjee, John M. Jarem

Electrical and Computer Engineering Faculty Publications

By using rigorous coupled-wave diffraction theory along with a time-dependent nonlinear formulation, we analyze two- and multiplewave coupling and the grating kinetics in BaTi03 with different boundary interfaces. Efffects of electrostatic and optical anisotropy have been included in the analysis. Significant mode conversion to higher orders is observed only when the boundary interfaces are highly mismatched.


Broadband Dynamic, Holographically Self-Recorded, And Static Hexagonal Scattering Patterns In Photorefractive Knbo3:Fe, Nickolai Kukhtarev, Tatiana V. Kukhtareva, John Caulfield, Partha P. Banerjee, Hsueh-Ling Yu, Lambertus Hesselink Aug 1995

Broadband Dynamic, Holographically Self-Recorded, And Static Hexagonal Scattering Patterns In Photorefractive Knbo3:Fe, Nickolai Kukhtarev, Tatiana V. Kukhtareva, John Caulfield, Partha P. Banerjee, Hsueh-Ling Yu, Lambertus Hesselink

Electrical and Computer Engineering Faculty Publications

We have observed and explained three types of hexagon pattern formation in photo refractive crystal KNb03:Fe. These are:

  • Dynamic (laser induced)
  • Semipermanent (holographically stored)
  • Permanent (induced by a static domain grid) over a wide wavelength range