Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1994

Brigham Young University

Articles 1 - 3 of 3

Full-Text Articles in Physics

Emitted Current Instability From Silicon Field Emission Emitters Due To Sputtering By Residual Gas Ions, W.I. Karain, Larry V. Knight, David D. Allred, A. Reyes-Mena Jul 1994

Emitted Current Instability From Silicon Field Emission Emitters Due To Sputtering By Residual Gas Ions, W.I. Karain, Larry V. Knight, David D. Allred, A. Reyes-Mena

Faculty Publications

We have fabricated arrays of silicon field emitters using semiconductor lithography techniques. The density of the tips was 10^5/cm^2. The maximum current that can be extracted from each emitter is limited by resistive heating. We have investigated how the electron current emitted changes under constant applied voltage. We found that the current is very sensitive to the vacuum conditions. We attribute this to sputtering of the emitters due to ionized residual gas molecules. The poorer the vacuum, the higher the instability in the current. We studied this phenomenon at 10^6 and 10-x Torr. The model of ...


Mesostructure Of Photoluminescent Porous Silicon, David D. Allred, F. Ruiz, C. Vázquez-López, Jesus González-Hernández, G. Romero-Paredes, R. Peña-Sierra, G. Torres-Delgado Jul 1994

Mesostructure Of Photoluminescent Porous Silicon, David D. Allred, F. Ruiz, C. Vázquez-López, Jesus González-Hernández, G. Romero-Paredes, R. Peña-Sierra, G. Torres-Delgado

Faculty Publications

Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy were used to characterize the microstructure of photoluminescent porous silicon (PS) layers formed by the anodic etching (HF:H2O:ethanol), at various current densities, of p-type (100) silicon wafers possessing resitivity in the range 1-2 Ω cm. Existing models for the origin of luminescence in PS are not supported by our observations. Cross-sectional as well as surface atomic force micrographs show the material to be clumpy rather than columnar; rodlike structures are not observed down to a scale of 40 nm. A three-dimensional model of the mesostructure of porous silicon is ...


Raman Spectroscopic Study Of The Formation Of T-Mosi2 From Mo/Si Multilayers, Ming Cai, David D. Allred, A. Reyes-Mena Jul 1994

Raman Spectroscopic Study Of The Formation Of T-Mosi2 From Mo/Si Multilayers, Ming Cai, David D. Allred, A. Reyes-Mena

Faculty Publications

We have used Raman spectroscopy, large- and small-angle x-ray diffraction spectroscopy of sputter-deposited, vacuum-annealed, soft x-ray Mo/Si thin-film multilayers to study the physics of silicide formation. Two sets of multilayer samples with d-spacing 8.4 and 2.0 nm have been studied. Annealing at temperatures above 800 °C causes a gradual formation of amorphous MoSi2 interfaces between the Si and Mo layers. The transition from amorphous to crystalline MoSi2 is abrupt. The experimental results indicate that nucleation is the dominant process for the early stage and crystallization is the dominant process after nucleation is well advanced. In the thicker ...