Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1993

Utah State University

Electrodynamics

Articles 1 - 2 of 2

Full-Text Articles in Physics

Solar Cycle And Seasonal Variationsin F Region Electrodynamics At Millstone Hill, M. J. Buonsanto, M. E. Hagan, J. E. Salah, Bela G. Fejer Sep 1993

Solar Cycle And Seasonal Variationsin F Region Electrodynamics At Millstone Hill, M. J. Buonsanto, M. E. Hagan, J. E. Salah, Bela G. Fejer

Bela G. Fejer

Incoherent scatter radar observations of ion drifts taken at Millstone Hill (42.6°N, 288.5°E) during 73 experiments in the period February 1984 to February 1992 are used to construct, for the first time at this station, average quiet-time E×B drift patterns for both solar cycle maximum and minimum, for the summer, winter, and equinox seasons. The daily variation of V⊥N shows a reversal from northward to southward drifts near noon, and a return to northward drifts in the premidnight hours. The weaker southward drift in the afternoon in summer noted by Wand and Evans (1981) is shown to occur only at …


F-Region Plasma Drifts Over Arecibo: Solar Cycle, Seasonal And Magnetic Activityeffects, Bela G. Fejer Jan 1993

F-Region Plasma Drifts Over Arecibo: Solar Cycle, Seasonal And Magnetic Activityeffects, Bela G. Fejer

Bela G. Fejer

We have used Arecibo incoherent scatter measurements from 1981 to 1990 to determine the characteristics of low-latitude F region plasma drifts. The measurements show large day-to-day variability even during magnetically quiet periods. The average poleward/perpendicular plasma drifts do not change significantly with season and solar cycle except in the midnight-morning sector. The zonal drifts show clear solar cycle and seasonal effects. The afternoon-nighttime eastward drifts increase with solar flux; the westward drifts in the early morning-afternoon sector show a large increase from summer to winter but are independent of solar activity. The two perpendicular velocity components also respond differently to …