Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Physics

Short Terahertz Pulses From Semiconductor Surfaces: The Importance Of Bulk Difference‐Frequency Mixing, Peter N. Saeta, Benjamin I. Greene, Shun Lien Chuang Dec 1993

Short Terahertz Pulses From Semiconductor Surfaces: The Importance Of Bulk Difference‐Frequency Mixing, Peter N. Saeta, Benjamin I. Greene, Shun Lien Chuang

All HMC Faculty Publications and Research

The crystallographic orientation dependence of the far‐infrared (FIR) light generated at the (001) surface of a zincblende semiconductor is shown to derive principally from bulk difference‐frequency mixing. A strong modulation is observed for 1‐GW/cm2 pulses on InP, which demonstrates that the radiated FIR wave produced by bulk optical rectification is comparable to that generated by the transport of photoinjected carriers. Using the bulk rectification light as a clock, we show that more than 95% of the light produced from an InP (111) crystal by 100‐fs, 100‐μJ pulses is generated in a time shorter ...


Coherent Versus Incoherent Ladar Detection At 2.09 Μm, Jay A. Overbeck, Martin B. Mark, Scott H. Mccraken, Paul F. Mcmanamon, Bradley D. Duncan Nov 1993

Coherent Versus Incoherent Ladar Detection At 2.09 Μm, Jay A. Overbeck, Martin B. Mark, Scott H. Mccraken, Paul F. Mcmanamon, Bradley D. Duncan

Electro-Optics and Photonics Faculty Publications

A 2.09-μm ladar system is built to compare coherent to incoherent detection. The 2.09-μm wavelength is of interest because of its high atmospheric transmission and because it is eyesafe. The 2.09-μm system presented is capable of either a coherent or incoherent operational mode, is tunable in a small region around 2.09 μm, and is being used to look at the statistical nature of the ladar return pulses for typical glint and speckle targets. To compare coherent to incoherent detection the probability of detection is investigated as the primary performance criterion of interest. The probability of detection ...


Sensitivity Improvement Of A 1-Μm Ladar System Incorporating An Active Optical Fiber Preamplifier, Michael S. Salisbury, Paul F. Mcmanamon, Bradley D. Duncan Nov 1993

Sensitivity Improvement Of A 1-Μm Ladar System Incorporating An Active Optical Fiber Preamplifier, Michael S. Salisbury, Paul F. Mcmanamon, Bradley D. Duncan

Electro-Optics and Photonics Faculty Publications

In an effort to increase the SNR of a continuous wave, 1-μm all solid state ladar system, a rare-earth-doped optical fiber amplifier is investigated as a preamplifier for ladar return signals. The experimental system is detailed and a theoretical analysis of the fiber amplifier's effect on both heterodyne and direct detection schemes is provided. Beginning with the optical powers incident on the detector, the signal and noises are analyzed, through the detector electronics, to predict the SNR. The SNR is then plotted as a function of the return signal power, and a SNR threshold is defined to determine a ...


Electronic Simulation Of The Temporal Characteristics Of Photon Memory Echoes And Some Related Applications, Yuwen Kuo, Monish Ranjan Chatterjee Aug 1993

Electronic Simulation Of The Temporal Characteristics Of Photon Memory Echoes And Some Related Applications, Yuwen Kuo, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

The characteristics of nonlinear photon memory echoes are investigated by means of SPICE simulations using equivalent resonator ensembles. By developing implicit nonlinear circuit models in the memory echo domain, the triple product formalism of electronic holography, involving correlation and convolution, is tested for the storage and recall of arbitrary signals and/or data bit streams in both time-inverted and nontime-inverted modes. Furthermore, a few specific optical data processing applications are also simulated in which the mixed binary multiplication of two or more binary bit streams is achieved.

Higher order products, optical pattern recognition, and other possible applications are also discussed ...


Size Imperfections In One-Dimensional Periodic Optical Arrays, Yan Zhong Aug 1993

Size Imperfections In One-Dimensional Periodic Optical Arrays, Yan Zhong

Master's Theses

The concepts of band theory for electrons can also be employed to describe the behavior of electromagnetic waves propagating in periodic dielectric structures. These periodic structures can produce photonic band gaps in which the propagation of electromagnetic waves is strictly prohibited. The introduction of impurities in such system gives rise to donor and acceptor gap modes in electron system and to energy gap modes in photonic system.

In my thesis, the impurity modes in one-dimensional, periodic, dielectric system will be studied. These modes are introduced in the 1-d dielectric structure by altering the thickness of one slab in an otherwise ...


Photopolarimeter Based On Planar Grating Diffraction, R. M.A. Azzam, K. A. Giardina Jun 1993

Photopolarimeter Based On Planar Grating Diffraction, R. M.A. Azzam, K. A. Giardina

Electrical Engineering Faculty Publications

A division-of-amplitude photopolarimeter (DOAP) is described that employs a diffraction grating in the conventional spectrometer orientation with the grating grooves normal to the plane of incidence. Four coplanar diffracted orders are used for polarimetric analysis to determine all four Stokes parameters of incident light simultaneously and virtually instantaneously (with the speed being determined solely by the photodetectors and their associated electronics); a fifth order is used for alignment by autocollimation or by use of a position-sensing quadrant detector. To sensitize the instrument for the +45° and -45° azimuths of incident linearly polarized light and for the handedness of incident circular ...


Properties Of Photon Density Waves In Multiple-Scattering Media, Bruce J. Tromberg, Lars O. Svaasand, Tsong-Tseh Tsay, Richard C. Haskell Feb 1993

Properties Of Photon Density Waves In Multiple-Scattering Media, Bruce J. Tromberg, Lars O. Svaasand, Tsong-Tseh Tsay, Richard C. Haskell

All HMC Faculty Publications and Research

Amplitude-modulated light launched into multiple-scattering media, e.g., tissue, results in the propagation of density waves of diffuse photons. Photon density wave characteristics in turn depend on modulation frequency (ω) and media optical properties. The damped spherical wave solutions to the homogeneous form of the diffusion equation suggest two distinct regimes of behavior: (1) a highfrequency dispersion regime where density wave phase velocity Vp has a ω dependence and (2) a low-frequency domain where Vp is frequency independent. Optical properties are determined for various tissue phantoms by fitting the recorded phase (Φ) and modulation (m) response to simple ...


Measurement Of The Casimir-Polder Force, C. I. Sukenik, M. G. Boshier, S. Cho, V. Sandoghdar, E. A. Hinds Feb 1993

Measurement Of The Casimir-Polder Force, C. I. Sukenik, M. G. Boshier, S. Cho, V. Sandoghdar, E. A. Hinds

Physics Faculty Publications

The authors have studied the deflection of ground-state sodium atoms passing through a micron-sized parallel-plate cavity by measuring the intensity of a sodium atomic beam transmitted through the cavity as a function of cavity plate separation. This experiment provides clear evidence for the existence of the Casimir-Polder force, which is due to modification of the ground-state Lamb shift in the confined space of a cavity. The results confirm the magnitude of the force and the distance dependence predicted by quantum electrodynamics.


Application Of Diffracto Sight Ot The Nondestructive Inspection Of Aircraft Structures, Jerzy Komorowski, Ronald W. Gould, David L. Simpson, Omer Hageniers Jan 1993

Application Of Diffracto Sight Ot The Nondestructive Inspection Of Aircraft Structures, Jerzy Komorowski, Ronald W. Gould, David L. Simpson, Omer Hageniers

Review of Progress in Quantitative Nondestructive Evaluation

The D Sight optical set up was first assembled nearly ten years ago at Diffracto Ltd. It has received several patents, the first of which was in the United States [1]. Since the mid 1980’s, D Sight has been successfully applied to surface quality inspections, particularly in the automotive and plastics industries. Recently, Komorowski et al. [2–5] have shown several potential applications of D Sight in the field of nondestructive inspection of aircraft structures. The technique has been shown to be particularly effective in locating nonvisible impact damage on large surfaces of aircraft structures built from composite materials ...


High-Speed Time-Resolved Holography For Imaging Transient Events, Michael Ehrlich, James W. Wagner Jan 1993

High-Speed Time-Resolved Holography For Imaging Transient Events, Michael Ehrlich, James W. Wagner

Review of Progress in Quantitative Nondestructive Evaluation

A time-resolved holographic system was developed to study detonation dynamics in dispersed solid particulate explosives. This required a system capable of recording a rapid sequence of exposures during the approximate 1/µs lifetime of the detonation event.


Electronic Holography And Shearography Nde For Inspection Of Modern Materials And Structures, J. Clarady, M. Summers Jan 1993

Electronic Holography And Shearography Nde For Inspection Of Modern Materials And Structures, J. Clarady, M. Summers

Review of Progress in Quantitative Nondestructive Evaluation

Coherent optical techniques such as holography, shearography, and ESPI have been available for inspection applications for years. However, they are still not well known or widely used. In fact, they have sometimes been described as “a solution looking for a problem” and like so many new technologies, they may have been somewhat oversold. These optical NDE methods do, however, offer some impressive advantages over more conventional inspection techniques for the right applications. It is the intent of this paper to provide some basic information on how two of these optical methods, holography and shearography, work discuss capabilities and limitations of ...


Beam Profile Reflectometry: A New Technique For Thin Film Measurements, J. Fanton, J. Opsal, D. L. Willenborg, S. M. Kelso, Allan Rosencwaig Jan 1993

Beam Profile Reflectometry: A New Technique For Thin Film Measurements, J. Fanton, J. Opsal, D. L. Willenborg, S. M. Kelso, Allan Rosencwaig

Review of Progress in Quantitative Nondestructive Evaluation

In the manufacture of semiconductor devices, it is of critical importance to know the thickness and material properties of various dielectric and semiconducting thin films. Although there are many techniques for measuring these films, the most commonly used are reflection spectrophotometry [1,2] and ellipsometry [3]. In the former method, the normal- incidence reflectivity is measured as a function of wavelength. The shape of the reflectivity spectrum is then analyzed using the Fresnel equations to determine the thickness of the film. In some cases, the refractive index can also be determined provided that the dispersion of the optical constants are ...


Electronic Shearography: Current Capabilities, Potential Limitations, And Future Possibilities For Industrial Nondestructive Inspection, John Deaton Jr., Robert S. Rogowski Jan 1993

Electronic Shearography: Current Capabilities, Potential Limitations, And Future Possibilities For Industrial Nondestructive Inspection, John Deaton Jr., Robert S. Rogowski

Review of Progress in Quantitative Nondestructive Evaluation

Image-shearing speckle pattern interferometry, more commonly referred to as ‘shearography’, is a full-field, laser-based interferometric technique first developed for applications in experimental mechanics [1,2]. Shearography is sensitive to derivatives of the out-of-plane surface displacement of a body under load, as opposed to other full-field methods such as holographic interferometry and conventional speckle pattern interferometry, which typically contour the surface displacement directly [3]. The early shearography experiments used high-resolution photographic film to record images of the laser speckle patterns. In contrast to traditional film-based techniques, electronic shearography uses an electronic camera for image recording [4]. This technology, commercially available for ...


Quantitative Analysis Of A Class Of Subsurface Cracks Using Shearography And Finite Element Modeling, Leland Melvin, Brooks A. Childers, James P. Fulton Jan 1993

Quantitative Analysis Of A Class Of Subsurface Cracks Using Shearography And Finite Element Modeling, Leland Melvin, Brooks A. Childers, James P. Fulton

Review of Progress in Quantitative Nondestructive Evaluation

The application of a full field non-contacting measurement system for nondestructively evaluating (NDE) subsurface flaws in structures has been conducted using Electronic Shearography. Shearography has primarily been used as a qualitative tool for locating areas of stress concentration caused by anomalies in materials[1–4]. NASA has been applying optical techniques such as these to NDE inspection of aircraft lap joint integrity, composite material defects, and pressure vessel quality assurance. This paper examines a special class of defects manufactured in thin metal panels and serves as a testbed for interpreting the displacement gradients produced on a simple well-characterized sample with ...


Laser Shearographic Testing Of Foam Insulation On Cryogenic Fuel Tanks, Douglas Burleigh, James E. Engel, David R. Kuhns Jan 1993

Laser Shearographic Testing Of Foam Insulation On Cryogenic Fuel Tanks, Douglas Burleigh, James E. Engel, David R. Kuhns

Review of Progress in Quantitative Nondestructive Evaluation

The Centaur is a high-energy rocket used as a second stage to the Atlas launch vehicle. The Centaur is cryogenically fueled, using liquid hydrogen and liquid oxygen, and requires insulation to prevent fuel boiloff prior to launch. The original insulation system used on Centaur is a set of fiberglass honeycomb panels, which are jettisoned after launch. These panels are still used on the Atlas I version of Atlas/Centaur.


Shearography With Syncrhonized Pressure Stressing, Tom Chatters, Bruno Pouet, Sridhar Krishnaswamy Jan 1993

Shearography With Syncrhonized Pressure Stressing, Tom Chatters, Bruno Pouet, Sridhar Krishnaswamy

Review of Progress in Quantitative Nondestructive Evaluation

Non-destructive evaluation (NDE) techniques of optical video-based speckle interferometry are gaining importance as inspection tools, particularly by the aerospace industry [1,2]. An optical technique such as shearography is attractive to the NDE community largely because of its non-contacting nature, full-field measurement and fast inspection results. However, in order for this optical interferometric method to become widely used as an NDE tool, this technique must be made to be robust enough to operate in noisy environments typically found in industry settings. In this paper, we address these issues for the case of detection of disbonds using shearography in conjunction with ...


Practical Estimates Of The Errors Associated With The Governing Shearography Equation, John Fulton, M. Namkung, L. D. Melvin Jan 1993

Practical Estimates Of The Errors Associated With The Governing Shearography Equation, John Fulton, M. Namkung, L. D. Melvin

Review of Progress in Quantitative Nondestructive Evaluation

In a series of papers Hung[1–3] pioneered the development of shearography, an optical NDE technique that detects gradients of surface displacements. Its utility for qualitative flaw characterization has been demonstrated, and while there is a need for using shearography in NDE for quantitative analysis, a large amount of the research[2–7] has concentrated on the qualitative evaluation of structures and materials. The purpose of this paper is to begin building upon a foundation for the newly emerging quantitative shearography[8].


Noise Reduction Techniques For Electronic Speckle Interferometry, Bruno Pouet, Sridhar Krishnaswamy Jan 1993

Noise Reduction Techniques For Electronic Speckle Interferometry, Bruno Pouet, Sridhar Krishnaswamy

Review of Progress in Quantitative Nondestructive Evaluation

Video-based speckle interferometric methods such as electronic speckle pattern interferometry (ESPI) allow us to measure full-field surface deformation of a diffuse object. In this paper we show, in a first step, that the susceptibility of ESPI to noise can be substantially reduced [1] by synchronizing the optical interferometer and the object stressing system with the CCD image acquisition and processing system, and by performing what amounts to a repetitive sequence of rapid ESPI tests. In this manner, a stable fringe pattern can be obtained as long as the ambient noise is of sufficiently lower frequency than the video acquisition rate ...


Optical Probing Of Spherical Resonance Applied To Surface Defect Inspection, Chung-Kao Hsieh, B. T. Khuri-Yakub Jan 1993

Optical Probing Of Spherical Resonance Applied To Surface Defect Inspection, Chung-Kao Hsieh, B. T. Khuri-Yakub

Review of Progress in Quantitative Nondestructive Evaluation

Ceramic materials keep high strength under high temperature and nonlubricative environments. Ceramic bearing balls are more commonly used now to replace steel bearing balls to sustain high loads under such hostile environments. However, because ceramics are brittle, surface defects of ceramic bearing balls can cause total mechanical failure of the whole mechanism. In this paper, we shall discuss a quick, efficient, and accurate method for performing nondestructive testing of spherical objects. Currently, there are several techniques being used to inspect spherical objects. Here, we introduce a new noncontacting technique, the optical probing technique of spherical resonance. This technique has great ...


Ultraviolet Spectra Of Acetic Acid, Glycine, And Glyphosate, J. Scott Mcconnell, Rose M. Mcconnell, Lloyd R. Hossner Jan 1993

Ultraviolet Spectra Of Acetic Acid, Glycine, And Glyphosate, J. Scott Mcconnell, Rose M. Mcconnell, Lloyd R. Hossner

Journal of the Arkansas Academy of Science

The influence of pH on the ultraviolet spectra of 0.001, 0.005, and 0.010 M glyphosate, glycine, and acetic acid was investigated. Each dilution of each acid was adjusted to acidic, neutral, and basic pH values. Ultraviolet spectra were recorded from 300 to 200 nm for each acid-dilution-pH combination. The wavelength of maximum absorption (Lambdamax) of glyphosate and glycine was slightly higher in the high pH solutions than in the neutral and low pH solutions. The Lambdamax of acetic acid was apparently unaffected by changes in ph. Molar extinction coefficients (epsilon) at Lambdamax increased with pH for all ...


An Axial Approach To Detection In Capillary Electrophoresis , John Aaron Taylor Jan 1993

An Axial Approach To Detection In Capillary Electrophoresis , John Aaron Taylor

Retrospective Theses and Dissertations

The purpose of this research has been to develop and demonstrate visualization schemes which further the capabilities of capillary electrophoresis instrumentation. Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection;Absorbance measurements were accomplished by focussing an incident beam of laser light into one end of the separation capillary. By utilizing signals collected over the entire length of the analyte band, this technique enhances the analytical path length of conventional absorbance detection sixty fold. The demonstrated instrument offers a fifteen-fold improvement in concentration limits of detection;Three fluorescence ...