Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 61 - 90 of 20584

Full-Text Articles in Physics

Light That Appears To Come From A Source That Does Not Exist, Itamar Stern, Yakov Bloch, Einav Grynszpan, Merav Kahn, Yakir Aharonov, Justin Dressel, Eliahu Cohen, John C. Howell Jan 2024

Light That Appears To Come From A Source That Does Not Exist, Itamar Stern, Yakov Bloch, Einav Grynszpan, Merav Kahn, Yakir Aharonov, Justin Dressel, Eliahu Cohen, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

Superoscillatory, band-limited functions oscillate faster than their fastest Fourier component. Superoscillations have been intensively explored recently as they give rise to many out-of-the-spectrum phenomena entailing both fundamental and applied significance. We experimentally demonstrate a form of superoscillations which is manifested by light apparently coming from a source located far away from the actual one. These superoscillations are sensed through sharp transverse shifts in the local wave vector at the minima of a pinhole diffraction pattern. We call this phenomenon “optical ventriloquism.”


Physics 100 Level Laboratory Data Collection Tables, Kalani Hettiarachchilage Jan 2024

Physics 100 Level Laboratory Data Collection Tables, Kalani Hettiarachchilage

Open Educational Resources

The physics 100-level laboratory part demonstrates and applies the material learned from related classes. This document shows guidelines for collecting data and analyzing them by using Microsoft Excel. Laboratory components of PHY 114/ PHY 206/SLS 261 (Introduction to Physics and Nature of Physical Processes), PHY116/PHY 121 (Physics I and General Physics I), and PHY 156/PHY 161 (Physics II and General Physics II) at College of Staten Island are in-person mandatory sessions for students and it is required to pass to receive a passing grade for that class. This part is taught by different instructors. Although everyone is supposed to follow …


Radio Measurements Of The Depth Of Air-Shower Maximum At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al. Jan 2024

Radio Measurements Of The Depth Of Air-Shower Maximum At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al.

Michigan Tech Publications, Part 2

The Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 17 km2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 30-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (Xmax), a probe for mass composition, at cosmic-ray energies between 1017.5 and 1018.8 eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show …


Demonstrating Agreement Between Radio And Fluorescence Measurements Of The Depth Of Maximum Of Extensive Air Showers At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al. Jan 2024

Demonstrating Agreement Between Radio And Fluorescence Measurements Of The Depth Of Maximum Of Extensive Air Showers At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al.

Michigan Tech Publications, Part 2

We show, for the first time, radio measurements of the depth of shower maximum (Xmax) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence dataset, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio Xmax resolution as a function of energy and demonstrate the ability to make competitive high-resolution Xmax …


Designing A Convection-Cloud Chamber For Collision-Coalescence Using Large-Eddy Simulation With Bin Microphysics, Aaron Wang, Mikhail Ovchinnikov, Fan Yang, Silvio Schmalfuss, Raymond A. Shaw Jan 2024

Designing A Convection-Cloud Chamber For Collision-Coalescence Using Large-Eddy Simulation With Bin Microphysics, Aaron Wang, Mikhail Ovchinnikov, Fan Yang, Silvio Schmalfuss, Raymond A. Shaw

Michigan Tech Publications, Part 2

Collisional growth of cloud droplets is an essential yet uncertain process for drizzle and precipitation formation. To improve the quantitative understanding of this key component of cloud-aerosol-turbulence interactions, observational studies of collision-coalescence in a controlled laboratory environment are needed. In an existing convection-cloud chamber (the Pi Chamber), collisional growth is limited by low liquid water content and short droplet residence times. In this work, we use numerical simulations to explore various configurations of a convection-cloud chamber that may intensify collision-coalescence. We employ a large-eddy simulation (LES) model with a size-resolved (bin) cloud microphysics scheme to explore how cloud properties and …


Electrochromic Polymers: From Electrodeposition To Hybrid Solid Devices, Haradou Sare, Dongmei Dong Jan 2024

Electrochromic Polymers: From Electrodeposition To Hybrid Solid Devices, Haradou Sare, Dongmei Dong

Faculty Scholarship for the College of Science & Mathematics

This paper reports on the linear colorimetric and electrochromic (EC) characteristics of electrodeposited polyaniline (PANI) films. This paper also investigates the infrared EC properties of acid-doped PANI films. The electrochemical polymerization method was employed to create a porous and thin PANI film layer onto PET-ITO substrates. This layer was capped with WO3 film to create a gel electrolyte sandwich structure that demonstrates the compatibility of PANI films with cathodic WO3 films in full devices. The electrodeposition of the film was fabricated by applying different voltages and time, with the optimal film quality achieved with the 1.7 V voltage and a …


Disaggregating Longer-Term Trends From Seasonal Variations In Measured Pv System Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon Jan 2024

Disaggregating Longer-Term Trends From Seasonal Variations In Measured Pv System Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon

Articles

Photovoltaic (PV) systems are widely adopted for renewable energy generation, but their performance is influenced by complex interactions between longer-term trends and seasonal variations. This study aims to remove these factors and provide valuable insights for optimising PV system operation. We employ comprehensive datasets of measured PV system performance over five years, focusing on identifying the distinct contributions of longer-term trends and seasonal effects. To achieve this, we develop a novel analytical framework that combines time series and statistical analytical techniques. By applying this framework to the extensive performance data, we successfully break down the overall PV system output into …


Light Curve And Hardness Tests For Millilensing In Grb 950830, Grb 090717a, And Grb 200716c, Oindabi Mukherjee, Robert J. Nemiroff Jan 2024

Light Curve And Hardness Tests For Millilensing In Grb 950830, Grb 090717a, And Grb 200716c, Oindabi Mukherjee, Robert J. Nemiroff

Michigan Tech Publications, Part 2

Two different temporal sections of a single gamma-ray burst (GRB) must be statistically similar to show an internal gravitational lensing signature. Here, two straightforward gravitational lensing tests are defined and applied: a light curve similarity test and a hardness similarity test. Gravitational millilensing has been claimed to be detected within several individual GRBs that contain two emission episodes separated by a time-delay. However, our analyses indicate that none of those claims satisfy both tests. The hardness similarity test performed on GRB 950830 and GRB 090717A found that the ratio between the second and the first emission episodes in each energy …


Conventions, Definitions, Identities, And Other Useful Formulae, Robert A. Mcnees Iv Jan 2024

Conventions, Definitions, Identities, And Other Useful Formulae, Robert A. Mcnees Iv

Physics: Faculty Publications and Other Works

As the name suggests, these notes contain a summary of important conventions, definitions, identities, and various formulas that I often refer to. They may prove useful for researchers working in General Relativity, Supergravity, String Theory, Cosmology, and related areas.


Magneto-Thermal Limitations In Superconducting Cavities At High Radio-Frequency Fields, I. Parajuli, G. Ciovati, A. Gurevich Jan 2024

Magneto-Thermal Limitations In Superconducting Cavities At High Radio-Frequency Fields, I. Parajuli, G. Ciovati, A. Gurevich

Physics Faculty Publications

The performance of superconducting radio-frequency Nb cavities at high radio-frequency (rf) fields in the absence of field emission can be limited by either a sharp decrease of the quality factor Q0(Bp) above peak surface magnetic fields Bp ∼100 mT or by a quench. We have measured Q0(Bp) at 2 K of several 1.3 GHz single-cell Nb cavities with different grain sizes, and with different ambient magnetic fields and cooldown rates below the critical temperature. Temperature mapping and a novel magnetic field mapping systems were used to find the location of “hot-spots” …


Two-Center And Path Interference In Dissociative Capture In P+ H2 Collisions, S. Bastola, M. Dhital, B. Lamichhane, A. Silvus, R. Lomsadze, A. Hasan, A. Igarashi, Michael Schulz Jan 2024

Two-Center And Path Interference In Dissociative Capture In P+ H2 Collisions, S. Bastola, M. Dhital, B. Lamichhane, A. Silvus, R. Lomsadze, A. Hasan, A. Igarashi, Michael Schulz

Physics Faculty Research & Creative Works

We have measured and calculated fully differential cross sections (FDCS) for dissociative capture in 75-keV p+H2 collisions. FDCS were analyzed in the kinetic energy release (KER) ranges 0 to 2.1 eV and 4 to 7 eV for two different molecular orientations. In the latter range, dissociation is dominated by electronic excitation to the 2pπu state. Here, we observed two-center interference for an orientation in the plane perpendicular to the initial beam axis and parallel to the transverse momentum transfer. The interference pattern is afflicted with a constant phase shift of π. In the range KER=0 to 2.1 eV, dissociation is …


Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao Jan 2024

Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao

Physics Faculty Publications

We outline an approach to calculate the transverse-momentum-dependent distribution of linearly polarized gluons inside an unpolarized hadron on the lattice with the help of large momentum effective theory. To achieve this purpose, we propose calculating a Euclidean version of the degree of polarization for a fast-moving hadron on the lattice, which is ultraviolet finite, and no soft function subtraction is needed. It indicates a practical way to explore the distribution of the linearly polarized gluons in a proton and the linearly polarized gluon effects in hadron collisions on the lattice.


Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White Jan 2024

Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White

Physics Faculty Publications

Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the …


Beam Spin Asymmetry Measurements Of Deeply Virtual Π⁰ Production With Clas12, The Clas Collaboration, A. Kim, S. Diehl, K. Joo, V. Kubarovsky, P. Achenbach, Z. Akbar, J. S. Alvarado, Whitney R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, M. Zureck, Et Al. Jan 2024

Beam Spin Asymmetry Measurements Of Deeply Virtual Π⁰ Production With Clas12, The Clas Collaboration, A. Kim, S. Diehl, K. Joo, V. Kubarovsky, P. Achenbach, Z. Akbar, J. S. Alvarado, Whitney R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, M. Zureck, Et Al.

Physics Faculty Publications

The new experimental measurements of beam spin asymmetry were performed for the deeply virtual exclusive π0 production in a wide kinematic region with the photon virtualities Q2 up to 6.6 GeV2and the Bjorken scaling variable 𝓍B in the valence regime. The data were collected by the CEBAF Large Acceptance Spectrometer (CLAS12) at Jefferson Lab with longitudinally polarized 10.6 GeV electrons scattered on an unpolarized liquid-hydrogen target. Sizable asymmetry values indicate a substantial contribution from transverse virtual photon amplitudes to the polarized structure functions. The interpretation of these measurements in terms of the Generalized Parton Distributions …


A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn Jan 2024

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn

Physics Faculty Publications

The continued success of the jet substructure program will require widespread use of tracking information to enable increasingly precise measurements of a broader class of observables. The recent reformulation of jet substructure in terms of energy correlators has simplified the incorporation of universal non-perturbative matrix elements, so called “track functions”, in jet substructure calculations. These advances make it timely to understand how these universal non-perturbative functions can be extracted from hadron collider data, which is complicated by the use jet algorithms. In this paper we introduce a new class of jet functions, which we call (semi-inclusive) track jet functions, which …


Double Distributions And Pseudodistributions, A. V. Radyushkin Jan 2024

Double Distributions And Pseudodistributions, A. V. Radyushkin

Physics Faculty Publications

We describe the approach to lattice extraction of generalized parton distributions (GPDs) that is based on the use of the double distribution (DD) formalism within the pseudodistribution framework. The advantage of using DDs is that GPDs obtained in this way have the mandatory polynomiality property, a nontrivial correlation between 𝓍 and ξ dependences of GPDs. Another advantage of using DDs is that the D-term appears as an independent entity in the DD formalism rather than a part of GPDs H and E. We relate the ξ dependence of GPDs to the width of the α profiles of the corresponding DDs …


Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond Jan 2024

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond

Physics Publications

Kerr instability can be exploited to amplify visible, near-infrared, and midinfrared ultrashort pulses. We use the results of Kerr instability amplification theory to inform our simulations amplifying few-cycle pulses. We show that the amplification angle dependence is simplified to the phase-matching condition of four-wave mixing when the intense pump is considered. Seeding with few-cycle pulses near the pump leads to broadband amplification without spatial chirp, while longer pulses undergo compression through amplification. Pumping in the midinfrared leads to multioctave spanning amplified pulses with single-cycle duration not previously predicted. We discuss limitations of the amplification process and optimizing pump and seed …


Unbiased Estimation Of Gravitational-Wave Anisotropies From Noisy Data, Nikolaos Kouvatsos, Alexander C. Jenkins, Arianna I. Renzini, Joseph D. Romano, Mairi Sakellariadou Jan 2024

Unbiased Estimation Of Gravitational-Wave Anisotropies From Noisy Data, Nikolaos Kouvatsos, Alexander C. Jenkins, Arianna I. Renzini, Joseph D. Romano, Mairi Sakellariadou

Physics and Astronomy Faculty Publications and Presentations

One of the most exciting targets of current and future gravitational-wave observations is the angular power spectrum of the astrophysical GW background. This cumulative signal encodes information about the large-scale structure of the Universe, as well as the formation and evolution of compact binaries throughout cosmic time. However, the finite rate of compact binary mergers gives rise to temporal shot noise, which introduces a significant bias in measurements of the angular power spectrum if not explicitly accounted for. Previous work showed that this bias can be removed by cross-correlating GW sky maps constructed from different observing times. However, this work …


Ultradeep Atca Imaging Of 47 Tucanae Reveals A Central Compact Radio Source, Alessandro Paduano, Arash Bahramian, James C. A. Miller-Jones, Adela Kawka, Tim J. Galvin, Liliana E. Rivera Sandoval, Sebastian Kamann, Jay Strader, Laura Chomiuk, Craig O. Heinke Jan 2024

Ultradeep Atca Imaging Of 47 Tucanae Reveals A Central Compact Radio Source, Alessandro Paduano, Arash Bahramian, James C. A. Miller-Jones, Adela Kawka, Tim J. Galvin, Liliana E. Rivera Sandoval, Sebastian Kamann, Jay Strader, Laura Chomiuk, Craig O. Heinke

Physics and Astronomy Faculty Publications and Presentations

We present the results of an ultradeep radio continuum survey, containing ∼480 hr of observations, of the Galactic globular cluster 47 Tucanae with the Australia Telescope Compact Array. This comprehensive coverage of the cluster allows us to reach rms noise levels of 1.19 μJy beam−1 at 5.5 GHz, 940 nJy beam−1 at 9 GHz, and 790 nJy beam−1 in a stacked 7.25 GHz image. This is the deepest radio image of a globular cluster and the deepest image ever made with the Australia Telescope Compact Array. We identify ATCA J002405.702-720452.361, a faint (6.3 ± 1.2 μJy at 5.5 …


Glitch Veto Based On Unphysical Gravitational Wave Binary Inspiral Templates, Raghav Girgaonkar, Soumya D. Mohanty Jan 2024

Glitch Veto Based On Unphysical Gravitational Wave Binary Inspiral Templates, Raghav Girgaonkar, Soumya D. Mohanty

Physics and Astronomy Faculty Publications and Presentations

Transient signals arising from instrumental or environmental factors, commonly referred to as glitches, constitute the predominant background of false alarms in the detection of gravitational waves in data collected from ground-based detectors. Therefore, effective data analysis methods for vetoing glitch-induced false alarms are crucial to enhancing the sensitivity of a search for gravitational waves. We present a veto method for glitches that impact matched filtering-based searches for binary inspiral signals. The veto uses unphysical sectors in the space of chirp time parameters as well as an unphysical extension including negative chirp times to efficiently segregate glitches from gravitational wave signals …


A Single-Photon Lidar Observes Atmospheric Clouds At Decimeter Scales: Resolving Droplet Activation Within Cloud Base, Fan Yang, Alexander B. Kostinski, Zeen Zhu, Katia Lamer, Edward Luke, Pavlos Kollias, Yong Meng Sua, Pei Hou, Raymond Shaw, Andrew M. Vogelmann Jan 2024

A Single-Photon Lidar Observes Atmospheric Clouds At Decimeter Scales: Resolving Droplet Activation Within Cloud Base, Fan Yang, Alexander B. Kostinski, Zeen Zhu, Katia Lamer, Edward Luke, Pavlos Kollias, Yong Meng Sua, Pei Hou, Raymond Shaw, Andrew M. Vogelmann

Michigan Tech Research Data

Clouds, crucial for understanding climate, begin with droplet formation from aerosols, but observations of this fleeting activation step are lacking in the atmosphere. Here we use a time-gated time-correlated single-photon counting lidar to observe cloud base structures at decimeter scales. Results show that the air-cloud interface is not a perfect boundary but rather is a transition zone where transformation of aerosol particles into cloud droplets occurs. The observed distributions of first-arriving photons within the transition zone reflect vertical development of a cloud, including droplet activation and condensational growth. Further, the highly resolved vertical profile of backscattered photons above cloud base …


The Use Of Fluorescence Lifetime Imaging (Flim) For In Situ Microbial Detection In Complex Mineral Substrates, Yekaterina G. Chmykh, Jay Nadeau Jan 2024

The Use Of Fluorescence Lifetime Imaging (Flim) For In Situ Microbial Detection In Complex Mineral Substrates, Yekaterina G. Chmykh, Jay Nadeau

Physics Faculty Publications and Presentations

The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM …


Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers Jan 2024

Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers

Physics Faculty Publications

We point out a problem with the formulation and derivations of sum rules for quark fragmentation functions that impacts their validity in QCD, but which potentially points toward an improved understanding of final states in inclusive hard processes. Fragmentation functions give the distribution of final-state hadrons arising from a parton exiting a hard scattering, and the sum rules for momentum, electric charge, etc. express conservation of these quantities. The problem arises from a mismatch between the quark quantum numbers of the initial quark and the fact that all observed final-state hadrons are confined bound states with color zero. We point …


Spectrum And Quench-Induced Dynamics Of Spin-Orbit-Coupled Quantum Droplets, Sonali Gangwar, Rajamanickam Ravisankar, S. (Simeon) I. Mistakidis, Paulsamy Muruganandam, Pankaj Kumar Mishra Jan 2024

Spectrum And Quench-Induced Dynamics Of Spin-Orbit-Coupled Quantum Droplets, Sonali Gangwar, Rajamanickam Ravisankar, S. (Simeon) I. Mistakidis, Paulsamy Muruganandam, Pankaj Kumar Mishra

Physics Faculty Research & Creative Works

We investigate the ground state and dynamics of one-dimensional spin-orbit coupled (SOC) quantum droplets within the extended Gross-Pitaevskii approach. As the SOC wave number increases, stripe droplet patterns emerge, with a flat-top background, for larger particle numbers. The surface energy decays following a power-law with respect to the interactions. At small SOC wave numbers, a transition from Gaussian to flat-top droplets occurs for either a larger number of atoms or reduced intercomponent attraction. The excitation spectrum shows that droplets for relatively small SOC wave numbers are stable, otherwise stripe droplets feature instabilities as a function of the particle number or …


A Data-Driven Machine Learning Approach For Electron-Molecule Ionization Cross Sections, Allison Harris, Josh Nepomuceno Jan 2024

A Data-Driven Machine Learning Approach For Electron-Molecule Ionization Cross Sections, Allison Harris, Josh Nepomuceno

Faculty publications – Physics

Despite their importance in a wide variety of applications, the estimation of ionization cross sections for large molecules continues to present challenges for both experiment and theory. Machine learning (ML) algorithms have been shown to be an effective mechanism for estimating cross section data for atomic targets and a select number of molecular targets. We present an efficient ML model for predicting ionization cross sections for a broad array of molecular targets. Our model is a 3-layer neural network that is trained using published experimental datasets. There is minimal input to the network, making it widely applicable. We show that …


Sequential Infiltration Synthesis Of Silicon Dioxide In Polymers With Ester Groups─Insight From In Situ Infrared Spectroscopy, Mahua Biswas, Vepa Rozyyev, Anil U. Mane, Amelia Korveziroska, Uttam Manna, Jeffrey W. Elam Jan 2024

Sequential Infiltration Synthesis Of Silicon Dioxide In Polymers With Ester Groups─Insight From In Situ Infrared Spectroscopy, Mahua Biswas, Vepa Rozyyev, Anil U. Mane, Amelia Korveziroska, Uttam Manna, Jeffrey W. Elam

Faculty publications – Physics

New strategies to synthesize nanometer-scale silicon dioxide (SiO2) patterns have drawn much attention in applications such as microelectronic and optoelectronic devices, membranes, and sensors, as we are approaching device dimensions shrinking below 10 nm. In this regard, sequential infiltration synthesis (SIS), a two-step gas-phase molecular assembly process that enables localized inorganic material growth in the targeted reactive domains of polymers, is an attractive process. In this work, we performed in situ Fourier transform infrared spectroscopy (FTIR) measurements during SiO2 SIS to investigate the reaction mechanism of trimethylaluminum (TMA) and tri(tert-pentoxy) silanol (TPS) precursors with polymers having ester functional groups (poly(methyl …


Revisiting The Divergent Multipole Expansion Of Atom-Surface Interactions: Hydrogen And Positronium, Α -Quartz, And Physisorption, Ulrich D. Jentschura Jan 2024

Revisiting The Divergent Multipole Expansion Of Atom-Surface Interactions: Hydrogen And Positronium, Α -Quartz, And Physisorption, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We revisit the derivation of multipole contributions to the atom-wall interaction previously presented in Łach et al. [G. Łach, M. DeKieviet, and U. D. Jentschura, Phys. Rev. A 81, 052507 (2010)10.1103/PhysRevA.81.052507]. A careful reconsideration of the angular momentum decomposition of the second-, third-, and fourth-rank tensors composed of the derivatives of the electric-field modes leads to a modification for the results for the quadrupole, octupole, and hexadecupole contributions to the atom-wall interaction. Asymptotic results are given for the asymptotic long-range forms of the multipole terms, in both the short-range and long-range limits. Calculations are carried out for hydrogen and positronium …


Constraining Models For The Origin Of Ultra-High-Energy Cosmic Rays With A Novel Combined Analysis Of Arrival Directions, Spectrum, And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, A. Puyleart, Et Al. Jan 2024

Constraining Models For The Origin Of Ultra-High-Energy Cosmic Rays With A Novel Combined Analysis Of Arrival Directions, Spectrum, And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, A. Puyleart, Et Al.

Michigan Tech Publications, Part 2

The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The …


Lithium Tetraborate As A Neutron Scintillation Detector: A Review, Elena Echeverria, John W. Mcclory, Lauren Samson, Katherine Shene, Juan A. Colon Santana, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, Lu Wang, Wai-Ning Mei, Kyle A. Nelson, Douglas S. Mcgregor, Peter A. Dowben, Carolina C. Ilie, James C. Petrosky, Archit Dhingra Dec 2023

Lithium Tetraborate As A Neutron Scintillation Detector: A Review, Elena Echeverria, John W. Mcclory, Lauren Samson, Katherine Shene, Juan A. Colon Santana, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, Lu Wang, Wai-Ning Mei, Kyle A. Nelson, Douglas S. Mcgregor, Peter A. Dowben, Carolina C. Ilie, James C. Petrosky, Archit Dhingra

Faculty Publications

The electronic structure and translucent nature of lithium tetraborate (Li2B4O7) render it promising as a scintillator medium for neutron detection applications. The inherently large neutron capture cross-section due to 10B and 6Li isotopes and the ease with which Li2B4O7 can be enriched with these isotopes, combined with the facile inclusion of rare earth dopants (occupying the Li+ sites), are expected to improve the luminescent properties, as well as the neutron detection efficiency, of Li2B4O7. The electronic structure of both doped …


Numerical Study Of Owls' Leading-Edge Serrations, Asif Shahriar Nafi, Nikolaos Beratlis, Elias Balaras, Roi Gurka Dec 2023

Numerical Study Of Owls' Leading-Edge Serrations, Asif Shahriar Nafi, Nikolaos Beratlis, Elias Balaras, Roi Gurka

Physics and Engineering Science

Owls' silent flight is commonly attributed to their special wing morphology combined with wingbeat kinematics. One of these special morphological features is known as the leading-edge serrations: rigid miniature hook-like patterns found at the primaries of the wings' leading-edge. It has been hypothesized that leading-edge serrations function as a passive flow control mechanism, impacting the aerodynamic performance. To elucidate the flow physics associated with owls' leading-edge serrations, we investigate the flow-field characteristic around a barn owl wing with serrated leading-edge geometry positioned at 20° angle of attack for a Reynolds number of 40 000. We use direct numerical simulations, where …