Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Physics

Structure Of Parton Quasi-Distributions And Their Moments, A. V. Radyushkin Jan 2019

Structure Of Parton Quasi-Distributions And Their Moments, A. V. Radyushkin

Physics Faculty Publications

We discuss the structure of the parton quasi-distributions (quasi-PDFs) Q (y, P-3) outside the "canonical" -1 <= y <= 1 support region of the usual parton distribution functions (PDFs). Writing the y(n) moments of Q (y, P-3) in terms of the combined x(n-2l)k(perpendicular to)(2l)-moments of the transverse momentum distribution (TMD). F(x,k(perpendicular to)(2)), we establish a connection between the large-vertical bar y vertical bar behavior of Q (y, P-3) and large-k(perpendicular to)(2) behavior of F(x,k(perpendicular to)(2)). In particular, we show that the 1/k(perpendicular to)(2) hard tail of TMDs in QCD results in a slowly decreasing similar to 1/vertical bar y vertical bar behavior of quasi-PDFs for large vertical bar y vertical bar that produces infinite y(n) moments of Q(y, P-3). We also relate the - 1/vertical bar y vertical bar terms with the lnz(3)(2)-singularities of the Ioffe-time pseudo-distributions m(v, z(3)(2)). Converting the operator product expansion for m(v,z(3)(2)) into a matching relation between the quasi-PDF Q(y, P-3) and the light-cone PDF f (x, mu(2)), we demonstrate that there is no contradiction between the infinite values of the y(n) moments of Q (y, P-3) and finite values of the x(n) moments of f (x, mu(2))


Form Factors Of Two-Hadron States From A Covariant Finite-Volume Formalism, Alessandro Baroni, Raúl Briceño, Maxwell T. Hansen, Felipe G. Ortega-Gama Jan 2019

Form Factors Of Two-Hadron States From A Covariant Finite-Volume Formalism, Alessandro Baroni, Raúl Briceño, Maxwell T. Hansen, Felipe G. Ortega-Gama

Physics Faculty Publications

In this work we develop a Lorentz-covariant version of the previously derived formalism for relating finite-volume matrix elements to 2 + J → 2 transition amplitudes. We also give various details relevant for the implementation of this formalism in a realistic numerical lattice QCD calculation. Particular focus is given to the role of single-particle form factors in disentangling finite-volume effects from the triangle diagram that arise when J couples to one of the two hadrons. This also leads to a new finite-volume function, denoted G, the numerical evaluation of which is described in detail. As an example we discuss the determination of ...


Challenges With Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato, B. Wang Dec 2018

Challenges With Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato, B. Wang

Physics Faculty Publications

We survey the current phenomenological status of semi-inclusive deeply inelastic scattering at moderate hard scales and in the limit of very large transverse momentum. As the transverse momentum becomes comparable to or larger than the overall hard scale, the differential cross sections should be calculable with fixed order perturbative QCD (pQCD) methods, while small transverse momentum (transverse-momentum-dependent factorization) approximations should eventually break down. We find large disagreement between HERMES and COMPASS data and fixed order calculations done with modern parton densities, even in regions of kinematics where such calculations should be expected to be very accurate. Possible interpretations are suggested.


High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen Aug 2018

High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen

Physics Faculty Publications

The Old Dominion University Compact Light Source (ODU CLS) design concept is presented-a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond (2/3 ps). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to ...


Probing High-Momentum Protons And Neutrons In Neutron-Rich Nuclei, The Clas Collaboration, L. B. Weinstein, S. Bültmann, D. Bulumulla, G. Charles, G. Dodge, F. Hauenstein, C. E. Hyde, A. Klein, S. Nadeeshani, Y. Prok, Z. W. Zhao Aug 2018

Probing High-Momentum Protons And Neutrons In Neutron-Rich Nuclei, The Clas Collaboration, L. B. Weinstein, S. Bültmann, D. Bulumulla, G. Charles, G. Dodge, F. Hauenstein, C. E. Hyde, A. Klein, S. Nadeeshani, Y. Prok, Z. W. Zhao

Physics Faculty Publications

The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron–proton pairs with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains ...


One-Loop Evolution Of Parton Pseudo-Distribution Functions On The Lattice, Anatoly Radyushkin Jul 2018

One-Loop Evolution Of Parton Pseudo-Distribution Functions On The Lattice, Anatoly Radyushkin

Physics Faculty Publications

We incorporate recent calculations of one-loop corrections for the reduced Ioffe-time pseudo-distribution m(v, z(3)(2) thorn to extend the leading-logarithm analysis of lattice data obtained by Orginos et al. We observe that the one-loop corrections contain a large term reflecting the fact that effective distances involved in the most important diagrams are much smaller than the nominal distance z(3). The large correction in this case may be absorbed into the evolution term, and the perturbative expansion used for extraction of parton densities at the μ ≈ 2 GeV scale is under control. The extracted parton distribution is rather ...


Electron- And Positron-Impact Ionization Of Inert Gases, R. I. Campeanu, H. R. J. Walters, Colm T. Whelan Jun 2018

Electron- And Positron-Impact Ionization Of Inert Gases, R. I. Campeanu, H. R. J. Walters, Colm T. Whelan

Physics Faculty Publications

Triple-differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions which cannot be separately detected in an experiment with a single projectile. A comparison is presented between theory and the recent experiments of [Gavin, deLucio, and DuBois, Phys. Rev. A95, 062703 (2017)] for e± and contrasted with the results from ...


Nucleon And Nuclear Structure Through Dilepton Production, I. V. Anikin, N. Baltzell, M. Boer, R. Boussarie, V. M. Braun, S. J. Brodsky, A. Camsonne, W. C. Chang, L. Colaneri, C. E. Hyde Apr 2018

Nucleon And Nuclear Structure Through Dilepton Production, I. V. Anikin, N. Baltzell, M. Boer, R. Boussarie, V. M. Braun, S. J. Brodsky, A. Camsonne, W. C. Chang, L. Colaneri, C. E. Hyde

Physics Faculty Publications

Transverse momentum distributions and generalized parton distributions provide a comprehensive framework for the three-dimensional imaging of the nucleon and the nucleus experimentally using deeply virtual semi-exclusive and exclusive processes. The advent of combined high luminosity facilities and large acceptance detector capabilities enables experimental investigation of the partonic structure of hadrons with time-like virtual probes, in complement to the rich on-going space-like virtual probe program. The merits and benefits of the dilepton production channel for nuclear structure studies are discussed within the context of the International Workshop on Nucleon and Nuclear Structure through Dilepton Production taking place at the European Center ...


Search For Three-Nucleon Short-Range Correlations In Light Nuclei, Z. Ye, P. Solvignon, D. Nguten, P. Aguilera, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, D. Anez, L. B. Weinstein Jan 2018

Search For Three-Nucleon Short-Range Correlations In Light Nuclei, Z. Ye, P. Solvignon, D. Nguten, P. Aguilera, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, D. Anez, L. B. Weinstein

Physics Faculty Publications

We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 < x < 2, confirming the dominance of two-nucleon short-range correlations. For x > 2, our data support the hypothesis that a previous claim of three-nucleon correlation dominance was an artifact caused by the limited resolution of the measurement. While 3N-SRCs appear to have an important contribution, our data show that isolating 3N-SRCs is significantly more complicated than for 2N-SRCs.


Simulation Of Inverse Compton Scattering And Its Implications On The Scattered Linewidth, N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, L. Serafini Jan 2018

Simulation Of Inverse Compton Scattering And Its Implications On The Scattered Linewidth, N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, L. Serafini

Physics Faculty Publications

Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to ...


Numerical Study Of The Relativistic Three-Body Quantization Condition In The Isotropic Approximation, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe Jan 2018

Numerical Study Of The Relativistic Three-Body Quantization Condition In The Isotropic Approximation, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe

Physics Faculty Publications

We present numerical results showing how our recently proposed relativistic three-particle quantization condition can be used in practice. Using the isotropic (generalized s-wave) approximation, and keeping only the leading terms in the effective range expansion, we show how the quantization condition can be solved numerically in a straightforward manner. In addition, we show how the integral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3, to the physical scattering amplitude can be solved at and below threshold. We test our methods by reproducing known analytic results for the 1/L expansion of the threshold state, the volume ...


Lattice Qcd Exploration Of Parton Pseudo-Distribution Functions, Kostas Orginos, Anatoly Radyushkin, Joseph Karpie, Savvas Zafeiropoulos Nov 2017

Lattice Qcd Exploration Of Parton Pseudo-Distribution Functions, Kostas Orginos, Anatoly Radyushkin, Joseph Karpie, Savvas Zafeiropoulos

Physics Faculty Publications

We demonstrate a new method of extracting parton distributions from lattice calculations. The starting idea is to treat the generic equal-time matrix element M(Pz(3), z(3)(2)) as a function of the Ioffe time nu = Pz(3) and the distance z(3). The next step is to divide M(Pz(3), z(3)(2)) by the rest-frame density M(0, z(3)(2)). Our lattice calculation shows a linear exponential z(3)-dependence in the rest-frame function, expected from the Z(z(3)(2)) factor generated by the gauge link. Still, we observe that the ratio M (Pz ...


Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey Aug 2017

Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey

Physics Faculty Publications

On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the ...


Rosenbluth Separation Of The Π0 Electroproduction Cross Section Off The Neutron, M. Mazouz, Z. Ahmed, H. Albataineh, K. Allada, K. A. Aniol, V. Bellini, M. Benali, W. Boeglin, P. Bertin, M. Canan, C. E. Hyde, S. Koirala, M. N. H. Rashad Jun 2017

Rosenbluth Separation Of The Π0 Electroproduction Cross Section Off The Neutron, M. Mazouz, Z. Ahmed, H. Albataineh, K. Allada, K. A. Aniol, V. Bellini, M. Benali, W. Boeglin, P. Bertin, M. Canan, C. E. Hyde, S. Koirala, M. N. H. Rashad

Physics Faculty Publications

We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσL/dt, dσT/dt, dσLT/dt, and dσTT/dt are extracted as a function of the momentum transfer to the recoil system at Q2 = 1.75 GeV2 and xB = 0.36. The ed -> edπ0 cross sections are found compatible with the small values expected from theoretical models. The en -> enπ0 cross sections show a dominance from the response to transversely polarized photons, and ...


Exclusive Η Electroproduction At W > 2 Gev With Clas And Transversity Generalized Parton Distributions, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, C. E. Hyde, M. Khachatryan, S E. Kuhn, Y. Prok, B. Torayev, L. B. Weinstein Mar 2017

Exclusive Η Electroproduction At W > 2 Gev With Clas And Transversity Generalized Parton Distributions, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, C. E. Hyde, M. Khachatryan, S E. Kuhn, Y. Prok, B. Torayev, L. B. Weinstein

Physics Faculty Publications

The cross section of the exclusive η electroproduction reaction ep -> e'p' η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /dtdQ2 dxBd φη and structure functions σUT + εσL, σTT, and σLT, as functions of t, were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t, both π0 and eta are described reasonably ...


Nonperturbative Evolution Of Parton Quasi-Distributions, A. V. Radyushkin Jan 2017

Nonperturbative Evolution Of Parton Quasi-Distributions, A. V. Radyushkin

Physics Faculty Publications

Using the formalism of parton virtuality distribution functions (VDFs) we establish a connection between the transverse momentum dependent distributions (TMDs) F(x,k2) and quasi-distributions (PQDs) Q(y,p3) introduced recently by X. Ji for lattice QCD extraction of parton distributions f(x). We build models for PQDs from the VDF-based models for soft TMDs, and analyze the p3 dependence of the resulting PQDs. We observe a strong nonperturbative evolution of PQDs for small and moderately large values of p3 reflecting the transverse momentum dependence of TMDs. Thus, the study of PQDs on the lattice in ...


Separated Response Functions In Exclusive, Forward Π± Electroproduction On Deuterium, G. M. Huber, H. P. Blok, A. Klein, L. M. Qin, K. Vansyoc, Jefferson Lab, Fπ Collaboration Jan 2015

Separated Response Functions In Exclusive, Forward Π± Electroproduction On Deuterium, G. M. Huber, H. P. Blok, A. Klein, L. M. Qin, K. Vansyoc, Jefferson Lab, Fπ Collaboration

Physics Faculty Publications

Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, Q2, and at different four-momentum transfer, t, can be used to probe QCD's transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in π- and π+ electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from ...


Direct Observation Of Quark-Hadron Duality In The Free Neutron F2 Structure Function, I. Niculescu, G. Niculescu, W. Melnitchouk, J. Arrington, M. E. Christy, S. Kuhn Jan 2015

Direct Observation Of Quark-Hadron Duality In The Free Neutron F2 Structure Function, I. Niculescu, G. Niculescu, W. Melnitchouk, J. Arrington, M. E. Christy, S. Kuhn

Physics Faculty Publications

Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for the ...


Rapidity Evolution Of Gluon Tmd From Low To Moderate X, I. Balitsky, A. Tarasov Jan 2015

Rapidity Evolution Of Gluon Tmd From Low To Moderate X, I. Balitsky, A. Tarasov

Physics Faculty Publications

We study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small x << 1 to linear evolution at moderate x ∼ 1.


Measurement Of Double-Polarization Asymmetries In The Quasielastic ³→He (→E, E' D) Process, M. Mihovilovic, G. Jin, M. Canan, S. Golge, R. Schiavilla, Jefferson Lab Hall A. Collaboration Jan 2014

Measurement Of Double-Polarization Asymmetries In The Quasielastic ³→He (→E, E' D) Process, M. Mihovilovic, G. Jin, M. Canan, S. Golge, R. Schiavilla, Jefferson Lab Hall A. Collaboration

Physics Faculty Publications

We present a precise measurement of double-polarization asymmetries in the ³→He (→e, e' d) reaction. This particular process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasielastic kinematics at Q2 = 0.25(GeV/c)2 for missing momenta up to 270 MeV/c. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on pm and ω, but are systematically offset. Beyond the region of the quasielastic peak, the discrepancies become even ...


Data Analysis Techniques, Differential Cross Sections, And Spin Density Matrix Elements For The Reaction ᵞP → Φp, K.P. Adhikari, D. Adikaram, M.J. Amaryan, A. Klein, S. Koirala, Clas Collaboration Jan 2014

Data Analysis Techniques, Differential Cross Sections, And Spin Density Matrix Elements For The Reaction ᵞP → Φp, K.P. Adhikari, D. Adikaram, M.J. Amaryan, A. Klein, S. Koirala, Clas Collaboration

Physics Faculty Publications

High-statistics measurements of differential cross sections and spin density matrix elements for the reaction ᵞp → ϕp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive coverage in the ϕ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the ϕ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged-(ϕ → K+ K-) and neutral( ϕ → (KOSKOL) K ...


High-Energy Amplitudes In N= 4 Sym In The Next-To-Leading Order, Ian Balitsky, Giovanni A. Chirilli Mar 2010

High-Energy Amplitudes In N= 4 Sym In The Next-To-Leading Order, Ian Balitsky, Giovanni A. Chirilli

Physics Faculty Publications

The high-energy behavior of the N = 4 SYM amplitudes in the Regge limit can be calculated order by order in perturbation theory using the high-energy operator expansion in Wilson lines. At large Nc , a typical four-point amplitude is determined by a single BFKL pomeron. The conformal structure of the four-point amplitude is fixed in terms of two functions: pomeron intercept and the coefficient function in front of the pomeron (the product of two residues). The pomeron intercept is universal while the coefficient function depends on the correlator in question. The intercept is known in the first two orders in coupling ...


Unique Electron Polarimeter Analyzing Power Comparison And Precision Spin-Based Energy Measurement, J. M. Grames, C. K. Sinclair, J. Mitchell, E. Chudakov, H. Fenker, A. Freyberger, D. W. Higinbotham, M. Poelker, M. Steigerwald, M. Tiefenback, Vipuli Dharmawardane Jan 2004

Unique Electron Polarimeter Analyzing Power Comparison And Precision Spin-Based Energy Measurement, J. M. Grames, C. K. Sinclair, J. Mitchell, E. Chudakov, H. Fenker, A. Freyberger, D. W. Higinbotham, M. Poelker, M. Steigerwald, M. Tiefenback, Vipuli Dharmawardane

Physics Faculty Publications

Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility ( Jefferson Laboratory). A Wien filter in the 100 keV beam line of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the ...


Inclusive Photoproduction Of Lepton Pairs In The Parton Model, A. Psaker Jan 2004

Inclusive Photoproduction Of Lepton Pairs In The Parton Model, A. Psaker

Physics Faculty Publications

In the framework of the QCD parton model, we study unpolarized scattering of high energy real photons from a proton target into lepton pairs and a system of hadrons. For a given parametrization of parton distributions in the proton, we calculate the cross section of this process and show the cancellation of the interference terms.


Gamma Echo Interpreted As A Phase-Shift Induced Transparency, Gilbert R. Hoy, Jos Odeurs Jan 2001

Gamma Echo Interpreted As A Phase-Shift Induced Transparency, Gilbert R. Hoy, Jos Odeurs

Physics Faculty Publications

In the gamma-echo technique a radioactive source is moved, with respect to a nuclear-resonant absorber, during the lifetime of first-excited nuclear state. This introduces a phase shift between the source radiation and the radiation from the absorber. If the source is moved abruptly, introducing a pi phase shift, the time-dependent intensity shows a sharp increase in the intensity at that time, the "gamma echo." Using the recently developed one-dimensional quantum-mechanical model, based on the technique developed by Heitler and Harris, the gamma-echo effect is seen to be a phase-shift-induced transparency. A closed-form solution for the time-dependent transmitted intensity has been ...


Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli Jan 1992

Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli

Electrical & Computer Engineering Faculty Publications

Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization, The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For ...