Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 45

Full-Text Articles in Physics

Multicenter Distorted-Wave Approach For Electron-Impact Ionization Of Molecules, Esam Ali, Don H. Madison Jul 2019

Multicenter Distorted-Wave Approach For Electron-Impact Ionization Of Molecules, Esam Ali, Don H. Madison

Physics Faculty Research & Creative Works

We have previously used the molecular three-body distorted-wave model to examine electron-impact single ionization of molecules. One of the possible weaknesses of this approach lies in the fact that the continuum electron wave functions do not depend on the orientation of the molecule. Here we introduce a model called the multicenter molecular three-body distorted-wave (MCM3DW) approach, for which the continuum electron wave functions depend on the orientation of the molecule at the time of ionization. The MCM3DW results are compared with experimental data taken from work by Dorn and colleagues [Ren, Phys. Rev. A 91, 032707 (2015)10.1103/PhysRevA ...


Low Energy Electron And Positron Impact Differential Cross Sections For The Ionization Of Water Molecules In The Coplanar And Perpendicular Kinematics, P. Singh, G. Purohit, C. Champion, D. Sebilleau, Don H. Madison Feb 2019

Low Energy Electron And Positron Impact Differential Cross Sections For The Ionization Of Water Molecules In The Coplanar And Perpendicular Kinematics, P. Singh, G. Purohit, C. Champion, D. Sebilleau, Don H. Madison

Physics Faculty Research & Creative Works

We report here triply differential cross sections (TDCSs) for 81 eV electron and positron-impact ionization of the combined (1b1 + 3a1 ) orbitals of the water molecule by using the second-order distorted wave Born approximation (DWBA2) for ejection electron and positron energies of 5 eV and 10 eV and different momentum transfer conditions. The electron-impact TDCS will be compared with the experimental data measured by Ren et al. [Phys. Rev. A 95, 022701 (2017)] and with the molecular 3-body distorted wave (M3DW) approximation results in the scattering plane as well as the perpendicular plane. The DWBA2 results are in better ...


Real-Time Observation Of Molecular Spinning With Angular High-Harmonic Spectroscopy, Lixin He, Pengfei Lan, Anh-Thu Le, Baoning Wang, Bincheng Wang, Xiaosong Zhu, Peixiang Lu, C. D. Lin Oct 2018

Real-Time Observation Of Molecular Spinning With Angular High-Harmonic Spectroscopy, Lixin He, Pengfei Lan, Anh-Thu Le, Baoning Wang, Bincheng Wang, Xiaosong Zhu, Peixiang Lu, C. D. Lin

Physics Faculty Research & Creative Works

We demonstrate an angular high-harmonic spectroscopy method to probe the spinning dynamics of a molecular rotation wave packet in real time. With the excitation of two time-delayed, polarization-skewed pump pulses, the molecular ensemble is impulsively kicked to rotate unidirectionally, which is subsequently irradiated by another delayed probe pulse for high-order harmonic generation (HHG). The spatiotemporal evolution of the molecular rotation wave packet is visualized from the time-dependent angular distributions of the HHG yields and frequency shift measured at various polarization directions and time delays of the probe pulse. The observed frequency shift in HHG is demonstrated to arise from the ...


Dynamic Effects In Electron Momentum Spectroscopy Of Sulfur Hexafluoride, Xing Wang, Shenyue Xu, Chuangang Ning, O. Al-Hagan, Pengfei Hu, Yongtao Zhao, Zhongfen Xu, Jingkang Deng, Enliang Wang, Xueguang Ren, Alexander Dorn, Don H. Madison Jun 2018

Dynamic Effects In Electron Momentum Spectroscopy Of Sulfur Hexafluoride, Xing Wang, Shenyue Xu, Chuangang Ning, O. Al-Hagan, Pengfei Hu, Yongtao Zhao, Zhongfen Xu, Jingkang Deng, Enliang Wang, Xueguang Ren, Alexander Dorn, Don H. Madison

Physics Faculty Research & Creative Works

Electron momentum spectroscopy (EMS) results are presented for the sulfur hexafluoride (SF6) molecule using a high-resolution binary (e, 2e) spectrometer at incident energies (Ei) of 600, 1200, and 2400 eV plus the binding energy. The valence orbital momentum profiles were measured with a binding energy resolution of 0.68 eV and angular resolutions of Δθ = ±0.6⁰, ΔΦ = ±0.85⁰. Whereas the two higher incident energies are in the range where normally EMS measurements do not exhibit an impact-energy dependence, the current experimental data display a dynamic dependence on the impact energies. The measured momentum profiles are compared with predictions ...


One More Hard Three-Loop Correction To Parapositronium Energy Levels, Michael I. Eides, Valery A. Shelyuto Jul 2017

One More Hard Three-Loop Correction To Parapositronium Energy Levels, Michael I. Eides, Valery A. Shelyuto

Physics and Astronomy Faculty Publications

A hard three-loop correction to parapositronium energy levels of order 7 is calculated. This nonlogarithmic contribution is due to the insertions of one-loop photon propagator in the fermion lines in the diagrams with virtual two-photon annihilation. We obtained ΔE = 0.03297(2)(7 / π3) for this energy shift.


Electrical Properties Of Covalently Functionalized Graphene, Paul Plachinda, David Evans, Raj Solanki Feb 2017

Electrical Properties Of Covalently Functionalized Graphene, Paul Plachinda, David Evans, Raj Solanki

Physics Faculty Publications and Presentations

We have employed first-principle calculations to study transformation of graphene’s electronic structure under functionalization by covalent bonds with different atomic and molecular groups - epoxies, amines, PFPA. It is shown that this functionalization leads to an opening in the graphene’s band gap on order of tens meV, but also leads to reduction of electrical conductivity. We also discuss the influence of charge exchange between the functionalizing molecule and graphene’s conjugated electrons on electron transport properties.


Influence Of Permanent Dipole And Dynamic Core-Electron Polarization On Tunneling Ionization Of Polar Molecules, Van-Hung Hoang, Song-Feng Zhao, Van-Hoang Le, Anh-Thu Le Feb 2017

Influence Of Permanent Dipole And Dynamic Core-Electron Polarization On Tunneling Ionization Of Polar Molecules, Van-Hung Hoang, Song-Feng Zhao, Van-Hoang Le, Anh-Thu Le

Physics Faculty Research & Creative Works

We present a detailed theoretical investigation on strong-field ionization of polar (CO and NO) as well as nonpolar molecules (N₂, O₂, and CO₂). Our results indicate that accounting for the Stark correction in the molecular tunneling ionization theory leads to overall fairly good agreements with numerical solutions of the time-dependent Schrödinger equation. Furthermore, we show that the effect of dynamic core-electron polarization, in general, has a weak influence on the angle-dependent ionization probability. However, in the case of CO we confirm the recent finding by B. Zhang, J. Yuan, and Z. Zhao [Phys. Rev. Lett. 111, 163001 (2013)PRLTAO0031-900710.1103 ...


Probing And Extracting The Structure Of Vibrating Sf₆ Molecules With Inner-Shell Photoelectrons, Ngoc-Ty Nguyen, R. R. Lucchese, C. D. Lin, Anh-Thu Le Jun 2016

Probing And Extracting The Structure Of Vibrating Sf₆ Molecules With Inner-Shell Photoelectrons, Ngoc-Ty Nguyen, R. R. Lucchese, C. D. Lin, Anh-Thu Le

Physics Faculty Research & Creative Works

We propose a scheme for probing the structure of vibrating molecules with photoelectrons generated from ultrashort soft-x-ray pulses. As an example we analyze below-100-eV photoelectrons liberated from the S(2p) orbital of vibrating SF₆ molecules to image very small structural changes of molecular vibration. In particular, photoionization cross sections and photoelectron angular distributions (PAD) at nonequilibrium geometries can be retrieved accurately with photoelectrons near the shape resonance at 13 eV. This is achieved with a pump-probe scheme, in which the symmetric stretch mode is first Raman excited predominantly by a relatively short laser pulse and then later probed at different ...


Orion's Veil. Iv. H2 Excitation And Geometry, N. P. Abel, Gary J. Ferland, C. R. O'Dell, Thomas H. Troland Mar 2016

Orion's Veil. Iv. H2 Excitation And Geometry, N. P. Abel, Gary J. Ferland, C. R. O'Dell, Thomas H. Troland

Physics and Astronomy Faculty Publications

The foreground Veil of material that lies in front of the Orion Nebula is the best studied sample of the interstellar medium because we know where it is located, how it is illuminated, and the balance of thermal and magnetic energy. In this work, we present high-resolution STIS observations toward the Trapezium, with the goal of better understanding the chemistry and geometry of the two primary Veil layers, along with ionized gas along the line of sight. The most complete characterization of the rotational/vibrational column densities of H2 in the almost purely atomic components of the Veil are ...


Analytical Model For Calibrating Laser Intensity In Strong-Field-Ionization Experiments, Song-Feng. Zhao, Anh-Thu Le, Cheng Jin, Xu Wang, C. D. Lin Feb 2016

Analytical Model For Calibrating Laser Intensity In Strong-Field-Ionization Experiments, Song-Feng. Zhao, Anh-Thu Le, Cheng Jin, Xu Wang, C. D. Lin

Physics Faculty Research & Creative Works

The interaction of an intense laser pulse with atoms and molecules depends extremely nonlinearly on the laser intensity. Yet experimentally there still exists no simple reliable methods for determining the peak laser intensity within the focused volume. Here we present a simple method, based on an improved Perelomov-Popov-Terent'ev model, that would allow the calibration of laser intensities from the measured ionization signals of atoms or molecules. The model is first examined by comparing ionization probabilities (or signals) of atoms and several simple diatomic molecules with those from solving the time-dependent Schrödinger equation. We then show the possibility of using ...


The Jcmt Nearby Galaxies Legacy Survey – X. Environmental Effects On The Molecular Gas And Star Formation Properties Of Spiral Galaxies, Angus Mok, C. D. Wilson, J. Golding, B. E. Warren, F. P. Israel, S. Serjeant, J. H. Knapen, José R. Sánchez-Gallego, P. Barmby, G. J. Bendo, E. Rosolowsky, P. Van Der Werf Jan 2016

The Jcmt Nearby Galaxies Legacy Survey – X. Environmental Effects On The Molecular Gas And Star Formation Properties Of Spiral Galaxies, Angus Mok, C. D. Wilson, J. Golding, B. E. Warren, F. P. Israel, S. Serjeant, J. H. Knapen, José R. Sánchez-Gallego, P. Barmby, G. J. Bendo, E. Rosolowsky, P. Van Der Werf

Physics and Astronomy Faculty Publications

We present a study of the molecular gas properties in a sample of 98 H I – flux selected spiral galaxies within ∼25 Mpc, using the CO J = 3 − 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary H ...


The Inferred Evolution Of The Cold Gas Properties Of Candels Galaxies At 0.5 < Z < 3.0, G. Popping, K. Caputi, S. C. Trager, Rachel S. Somerville, Avishai Dekel, Susan A. Kassin, Dale D. Kocevski, Anton M. Koekemoer, Sandra M. Faber, Henry C. Ferguson, A. Galametz, Norman A. Grogin, Yicheng Guo, Y. Lu, Arjen Van Der Wel, Benjamin J. Weiner Dec 2015

The Inferred Evolution Of The Cold Gas Properties Of Candels Galaxies At 0.5 Z < 3.0, G. Popping, K. Caputi, S. C. Trager, Rachel S. Somerville, Avishai Dekel, Susan A. Kassin, Dale D. Kocevski, Anton M. Koekemoer, Sandra M. Faber, Henry C. Ferguson, A. Galametz, Norman A. Grogin, Yicheng Guo, Y. Lu, Arjen Van Der Wel, Benjamin J. Weiner

Physics and Astronomy Faculty Publications

We derive the total cold gas, atomic hydrogen, and molecular gas masses of approximately 24 000 galaxies covering four decades in stellar mass at redshifts 0.5 < z < 3.0, taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey survey. Our inferences are based on the inversion of a molecular hydrogen based star formation law, coupled with a prescription to separate atomic and molecular gas. We find that: (1) there is an increasing trend between the inferred cold gas (H i and H2), H i, and H2 mass and the stellar mass of galaxies down to stellar masses of 108 M already in place at z = 3; (2) the molecular fractions of cold gas increase with increasing stellar mass and look-back time; (3) there is hardly any evolution in the mean H i content of galaxies at fixed stellar mass; (4) the cold gas fraction and relative amount of molecular hydrogen in ...


Comparison Of Experimental And Theoretical Electron-Impact-Ionization Triple-Differential Cross Sections For Ethane, Esam Ali, Kate Nixon, Andrw Murray, Chuangang Ning, James Colgan, Don H. Madison Oct 2015

Comparison Of Experimental And Theoretical Electron-Impact-Ionization Triple-Differential Cross Sections For Ethane, Esam Ali, Kate Nixon, Andrw Murray, Chuangang Ning, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O, NH3, CH4). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p-type "peanut" shape. In this work, we examine ethane (C2H6) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has ...


Theoretical And Experimental Study Of (E,2e) Ionization Of The Co2 (1ΠG) Molecule At 250 Ev, Mevlut Dogan, Zehra Nur Ozer, Murat Yavuz, Osman Alwan, Adnan Naja, Boghos B. Joulakian, Esam S M Ali, Chuangang Ning, Don H. Madison Sep 2015

Theoretical And Experimental Study Of (E,2e) Ionization Of The Co2 (1ΠG) Molecule At 250 Ev, Mevlut Dogan, Zehra Nur Ozer, Murat Yavuz, Osman Alwan, Adnan Naja, Boghos B. Joulakian, Esam S M Ali, Chuangang Ning, Don H. Madison

Physics Faculty Research & Creative Works

Triple differential cross sections (TDCSs) of the electron-impact ionization of carbon dioxide are measured in the coplanar asymmetric geometry, with incident electron energy value of 250eV, and ejected electron of 37eV. We will report the experimental results in comparison with the theoretical calculations of the M3DW and TCC (type 5) calculations.


First Evidence Of Interference Effects In The Ionization Of N2 Molecule, Zehra Nur Ozer, Hari Chaluvadi, Mevlut Dogan, James Colgan, Don H. Madison Sep 2015

First Evidence Of Interference Effects In The Ionization Of N2 Molecule, Zehra Nur Ozer, Hari Chaluvadi, Mevlut Dogan, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We will present an experimental and theoretical investigation of triple differential cross sections for electron- impact ionization of nitrogen molecules at intermediate energies. A discussion of interference effects contained in the theoretical and experimental interference factors will be presented.


Interference Effects For Intermediate Energy Electron-Impact Ionization Of H2 And N2 Molecules, Zehra Nur Ozer, Hari Chaluvadi, Don H. Madison, Mevlut Dogan Jul 2015

Interference Effects For Intermediate Energy Electron-Impact Ionization Of H2 And N2 Molecules, Zehra Nur Ozer, Hari Chaluvadi, Don H. Madison, Mevlut Dogan

Physics Faculty Research & Creative Works

We have studied electron impact ionization of H2 and N2 molecules at intermediate energies to look for possible two center interference effects experimentally and theoretically. Here we report a study of the interference factor I for 250 eV electron-impact ionization. The experimental measurements are performed using a crossed-beam-type electron-electron coincidence spectrometer and theoretical calculations are obtained using the Molecular Three Body Distorted Wave Approximation (M3DW). We found that the I-factor demonstrated strong evidence for two-center interference effects for both H2 and N2. We also found that the I-factor is more sensitive to projectile angular scans than ...


Measurement Of The Formation Rate Of Muonic Hydrogen Molecules, V. A. Andreev, T. I. Banks, R. M. Carey, T. A. Case, S. M. Clayton, K. M. Crowe, J. Deutsch, J. Egger, S. J. Freedman, V. A. Ganzha, Tim Gorringe, F. E. Gray, D. W. Hertzog, M. Hildebrandt, P. Kammel, B. Kiburg, S. Knaack, P. A. Kravtsov, A. G. Krivshich, B. Lauss, K. R. Lynch, E. M. Maev, O. E. Maev, F. Mulhauser, C. Petitjean, G. E. Petrov, R. Prieels, G. N. Schapkin, G. G. Semenchuk, M. A. Soroka, Vladimir Tishchenko, A. A. Vasilyev, A. A. Vorobyov, M. E. Vznuzdaev, P. Winter May 2015

Measurement Of The Formation Rate Of Muonic Hydrogen Molecules, V. A. Andreev, T. I. Banks, R. M. Carey, T. A. Case, S. M. Clayton, K. M. Crowe, J. Deutsch, J. Egger, S. J. Freedman, V. A. Ganzha, Tim Gorringe, F. E. Gray, D. W. Hertzog, M. Hildebrandt, P. Kammel, B. Kiburg, S. Knaack, P. A. Kravtsov, A. G. Krivshich, B. Lauss, K. R. Lynch, E. M. Maev, O. E. Maev, F. Mulhauser, C. Petitjean, G. E. Petrov, R. Prieels, G. N. Schapkin, G. G. Semenchuk, M. A. Soroka, Vladimir Tishchenko, A. A. Vasilyev, A. A. Vorobyov, M. E. Vznuzdaev, P. Winter

Physics and Astronomy Faculty Publications

Background: The rate λppμ characterizes the formation of ppμ molecules in collisions of muonic atoms with hydrogen. In measurements of the basic weak muon capture reaction on the proton to determine the pseudoscalar coupling gP, capture occurs from both atomic and molecular states. Thus knowledge of λppμ is required for a correct interpretation of these experiments.

Purpose: Recently the MuCap experiment has measured the capture rate ΛS from the singlet atom, employing a low-density active target to suppress ppμ formation [V. Andreev et al. (MuCap Collaboration), Phys. Rev. Lett. 110, 012504 (2013)]. Nevertheless, given ...


Target Electron Ionization In Li2+-L-Li Collisions: A Multi-Electron Perspective, Maciej Dominik Piewanowski, Laszlo Gulyas, Marko W. Horbatsch, Johannes Goullon, Natalia Ferreira, Renate Hubele, Vitor L B D De Jesus, H. Lindenblatt, Katharina R. Schneider, Michael Schulz, Michael Schuricke, Z. Song, Shaofeng Zhang, Daniel Fischer, Tom Kirchner Apr 2015

Target Electron Ionization In Li2+-L-Li Collisions: A Multi-Electron Perspective, Maciej Dominik Piewanowski, Laszlo Gulyas, Marko W. Horbatsch, Johannes Goullon, Natalia Ferreira, Renate Hubele, Vitor L B D De Jesus, H. Lindenblatt, Katharina R. Schneider, Michael Schulz, Michael Schuricke, Z. Song, Shaofeng Zhang, Daniel Fischer, Tom Kirchner

Physics Faculty Research & Creative Works

Target electron removal in Li2+-Li collisions at 2290 keV/amu is studied experimentally and theoretically for ground and excited lithium target configurations. It is shown that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. According to our calculations, the process is shown to be strongly single-particle like. On one hand, a high resemblance between theoretical single-particle ionization and exclusive inner-shell ionization is demonstrated, and contributions from multi-electron processes are found to be weak. On the other hand, it is indicated by the discrepancy between experimental and ...


Wavelength Dependent Specific Plasmon Resonance Coupling Of Single Silver Nanoparticles With Egfp, Kerry J. Lee, Tao Huang, Prakash D. Nallathamby Jan 2015

Wavelength Dependent Specific Plasmon Resonance Coupling Of Single Silver Nanoparticles With Egfp, Kerry J. Lee, Tao Huang, Prakash D. Nallathamby

Chemistry & Biochemistry Faculty Publications

Noble metal nanoparticles (NPs) possess unique plasmonic properties, enabling them to serve as sub-diffraction light sources and nano-antennae for a wide range of applications. Here we report the specific interaction of single Ag NPs with single EGFP molecules and a high dependence of their interaction upon localized-surface-plasmon-resonance (LSPR) spectra of single Ag NPs and EGFP. The LSPR spectra of single red Ag NPs show a stunning 60 nm blue-shift during their incubation with EGFP, whereas they remain unchanged during their incubation with bovine serum albumin (BSA). Interestingly, the peak wavelengths of the LSPR spectra of green and blue Ag NPs ...


Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison Jun 2014

Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison

Physics Faculty Research & Creative Works

For the last few years, our group has calculated cross sections for electron-impact ionization of molecules using the molecular three-body distorted-wave approximation coupled with the orientation-averaged molecular orbital (OAMO) approximation. This approximation was very successful for calculating ionization cross sections for hydrogen molecules and to a lesser extent nitrogen molecules. Recently we used the approximation to calculate single ionization cross sections for the 1t2 state of methane (CH4) and we found major discrepancies with the experimental data. Here we investigate the validity of the OAMO approximation by calculating cross sections that have been properly averaged over all molecular ...


High-Order-Harmonic Generation From Molecular Isomers With Midinfrared Intense Laser Pulses, Anh-Thu Le, R. R. Lucchese, C. D. Lin Aug 2013

High-Order-Harmonic Generation From Molecular Isomers With Midinfrared Intense Laser Pulses, Anh-Thu Le, R. R. Lucchese, C. D. Lin

Physics Faculty Research & Creative Works

We present theoretical calculations of high-order-harmonic generation (HHG) from stereoisomers of 1,2-dichloroethylene (C₂H₂Cl₂) and 2-butene (C₄H₈) based on the quantitative rescattering theory. Our results show that the HHG spectra from these cis and trans isomers with intense midinfrared laser pulses are clearly distinguishable, even when the molecules are randomly oriented, in good agreement with the recent experiments by Wonget al. [Phys. Rev. A 84, 051403(R) (2011)]. We found that the angle-averaged tunneling ionization yields and photoionization cross sections from the cis and trans isomers for both molecules are nearly identical. The origin of the differences in HHG spectra ...


Why Do Molecules Echo Atomic Periodicity?, Ray Hefferlin, Jonathan Sackett, Jeremy Tatum May 2013

Why Do Molecules Echo Atomic Periodicity?, Ray Hefferlin, Jonathan Sackett, Jeremy Tatum

Faculty Works

Franck–Condon factors are investigated for sequences of free

main-group diatomic molecules. Theory-based Condon loci

(parabolas) and Morse-potential loci are plotted on Deslandres

tables to verify if they, indeed, follow the largest Franck–Condon

factors. Then, the inclination angles of the Condon loci

are determined. Thus, entire band systems are quantified by

one variable, the angle. For all available isoelectronic sequences,

this angle increases from a central minimum toward

magic-number molecular boundaries. The theory for the Condon

locus gives the angle in terms of the ratio of the upperstate

to the lower-state force constants. It is concluded that

the periodicity ...


Pattern-Stabilized Decorated Polar Liquid-Crystal Fibers, Alexey Eremin, Ulrike Kornek, Stephan Stern, Ralf Stannarius, Fumito Araoka, Hideo Takezoe, Hajnalka Nadasi, Wolfgang Weissflog, Antal Jakli Jul 2012

Pattern-Stabilized Decorated Polar Liquid-Crystal Fibers, Alexey Eremin, Ulrike Kornek, Stephan Stern, Ralf Stannarius, Fumito Araoka, Hideo Takezoe, Hajnalka Nadasi, Wolfgang Weissflog, Antal Jakli

Chemical Physics Publications

Geometric frustration gives rise to new fundamental phenomena and is known to yield the formation of exotic states of matter, such as incommensurate crystals, modulated liquid-crystalline phases, and phases stabilized by defects. In this Letter, we present a detailed study of polar structure of freely suspended fluid filaments in a polarization modulated liquid-crystal phase. We show that a periodic pattern of polarization-splay stripes separated by defect boundaries and decorating smectic layers can stabilize the structure of fluid fibers against the Rayleigh-Plateau instability. The instability is suppressed by the resistance of the defect structure to a radial compression of the cylindrical ...


Comparison Of Experiment And Theory For Electron Impact Ionization Of Isoelectronic Atoms And Molecules, Hari Chaluvadi, Kate L. Nixon, Sadek M. Amami, Andrew James Murray, Don H. Madison Jan 2012

Comparison Of Experiment And Theory For Electron Impact Ionization Of Isoelectronic Atoms And Molecules, Hari Chaluvadi, Kate L. Nixon, Sadek M. Amami, Andrew James Murray, Don H. Madison

Physics Faculty Research & Creative Works

Experimental and Theoretical Triply Differential Cross sections will be presented for low energy electron impact ionization of Ne, CH4, and NH3. The collision mechanisms responsible for the various structures found in the cross sections will be discussed.


Differential Cross Sections For Single Ionization Of H2 By 75kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison Jan 2012

Differential Cross Sections For Single Ionization Of H2 By 75kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

We have calculated Triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H2 by 75 keV proton impact using the molecular 3 body distorted wave Eikonal initial state (M3DW-EIS) approach. Previously published measured DDCS-P (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles which were interpreted as an interference resulting from the two-centered potential of the molecule.


Effect Of Projectile Coherence On Atomic Fragmentation Processes, Michael Schulz, Kisra N. Egodapitiya, Sachin D. Sharma, Aaron C. Laforge, Robert Moshammer, A. A. Hasan, Don H. Madison Jan 2012

Effect Of Projectile Coherence On Atomic Fragmentation Processes, Michael Schulz, Kisra N. Egodapitiya, Sachin D. Sharma, Aaron C. Laforge, Robert Moshammer, A. A. Hasan, Don H. Madison

Physics Faculty Research & Creative Works

We demonstrate that the projectile coherence can have a major impact on atomic fragmentation processes. This has been overlooked for decades in formal scattering theory and may explain puzzling discrepancies between theoretical and experimental fully differential cross sections for single ionization.


Young-Type Interference In Projectile-Electron Loss In Energetic Ion-Molecule Collisions, Alexander B. Voitkiv, B. Najjari, Daniel Fischer, Anton N. Artemyev, Andrey S. Surzhykov Jun 2011

Young-Type Interference In Projectile-Electron Loss In Energetic Ion-Molecule Collisions, Alexander B. Voitkiv, B. Najjari, Daniel Fischer, Anton N. Artemyev, Andrey S. Surzhykov

Physics Faculty Research & Creative Works

Under certain conditions an electron bound in a fast projectile ion, colliding with a molecule, interacts mainly with the nuclei and inner shell electrons of atoms forming the molecule. Because of their compact localization in space and distinct separation from each other, these molecular centers play in such collisions a role similar to that of optical slits in light scattering leading to pronounced interference in the spectra of the electron emitted from the projectile.


Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analogue, Christopher J. Colyer, Susan M. Bellm, G. Friedrich Hanne, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning, B. Lohmann Jan 2011

Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analogue, Christopher J. Colyer, Susan M. Bellm, G. Friedrich Hanne, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning, B. Lohmann

Physics Faculty Research & Creative Works

We present dynamical (e, 2e) measurements for the electron impact ionization of formic acid and tetrahydrofuran molecules performed under similar kinematics. The experiments have been performed in the coplanar asymmetric geometry for a range of momentum transfers, at an incident electron energy of 250 eV and with an ejected electron energy of 10eV. The experimental results are compared with theoretical calculations carried out using the molecular 3-body distorted wave (M3DW) model.


Second-Harmonic Generation In A Bent-Core Nematic Liquid Crystal, Seung Ho Hong, J. C. Williams, Robert J. Twieg, Antal Jakli, Jim T. Gleeson, Samuel N. Sprunt, Brett Ellman Oct 2010

Second-Harmonic Generation In A Bent-Core Nematic Liquid Crystal, Seung Ho Hong, J. C. Williams, Robert J. Twieg, Antal Jakli, Jim T. Gleeson, Samuel N. Sprunt, Brett Ellman

Chemical Physics Publications

Second-Second-harmonic generation (SHG) is studied in the magnetically aligned nematic phase of a bent-core liquid crystal (BCN) and compared to similar measurements made on a conventional rodlike (calamitic) nematic compound. The second-harmonic (SH) light detected from both materials is predominantly due to scattering and therefore incoherent. Results on the calamitic are consistent with a polarization induced by ordinary director fluctuations in the nematic phase. However, the SH scattering collected in the BCN exhibits a different temperature and angular dependence. We discuss how these differences could arise from the effects of short-range correlated, smectic-C-type molecular clusters, which have been detected in ...


Effect Of An Improved Molecular Potential On Strong-Field Tunneling Ionization Of Molecules, Song-Feng Zhao, Cheng Jin, Anh-Thu Le, C. D. Lin Sep 2010

Effect Of An Improved Molecular Potential On Strong-Field Tunneling Ionization Of Molecules, Song-Feng Zhao, Cheng Jin, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.